260 research outputs found

    Building A Resilient Event Industry: Lessons Learned during the COVID-19 Pandemic

    Get PDF
    Guided by the theoretical framework of organizational resilience, this study interviewed twenty-six event planners regarding their risk and crisis management related practices and their experiences with the COVID-19 global pandemic. This study conducted thematic analyses to analyze the data. The results showed that organizational resilience was approached through planned and adaptive resilience. Their crisis management practices are influenced by event planners’ personal knowledge, experiences, and expertise as well as their organization’s policy and leadership. When it comes to the case of COVID-19, the concept of organizational residence is mainly reflected through adaptive resilience. It also seems that most resilient organizations have been excellent in communicating and managing customer relationships and creating innovative strategies to generate revenue. Further theoretical and practical implications were provided based on the findings

    Exploring Residents’ Roles as Risk Insiders in Tourism Crisis Management

    Get PDF
    The purpose of this study is to explore residents’ roles as risk insiders in tourism crisis management. Particularly, this study used the recent event of Red Tides in Florida as the context and surveyed 969 potential visitors and 460 Florida residents. The preliminary findings indicated that visitors tend to rely on residents for risk related information. Guided by the social identity theory, this study further investigated the main drivers of Florida residents’ information-sharing behavior. The results indicated that both subjective knowledge and social identity influenced residents’ willingness to share risk information with visitors and their actual behavior. Based on the findings, this study further discussed a new research direction that involves residents in tourism crisis management. This study also offers practical implications on how to encourage residents to participate in the information-exchange process in tourism crisis management

    Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response

    Full text link
    Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patientsThis work was funded by: Ministerio de Economía y Competitividad of Spain (SAF2011- 23475 to LMB; SAF2013-43421-R and SAF2010-19222 to CB; and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), and FEDER funds. CIBERER is an initiative of the Instituto de Salud Carlos III (ISCIII) of SPAIN supported by FEDER fund

    Mice lacking endoglin in macrophages show an impaired immune response

    Get PDF
    24 p.-9 fig.-1 tab. Ojeda Fernández, Luisa et al.Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-OslerWeber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients.This work was funded by: Ministerio de Economía y Competitividad of Spain (SAF2011-23475 to LMB; SAF2013-43421-R and SAF2010- 19222 to CB.Peer reviewe

    Evaluation of A2BP1 as an Obesity Gene

    Get PDF
    OBJECTIVE-A genome-wide association study (GWAS) in Pima Indians (n = 413) identified variation in the ataxin-2 binding protein 1 gene (A2BP1) that was associated with percent body fat. On the basis of this association and the obese phenotype of ataxin-2 knockout mice, A2BP1 was genetically and functionally analyzed to assess its potential role in human obesity. RESEARCH DESIGN AND METHODS-Variants spanning A2BP1 were genotyped in a population-based sample of 3,234 full-heritage Pima Indians, 2,843 of whom were not part of the initial GWAS study and therefore could serve as a sample to assess replication. Published GWAS data across A2BP1 were additionally analyzed in French adult (n = 1,426) and children case/control subjects (n = 1,392) (Meyre et al. Nat Genet 2009;41:157-159). Selected variants were genotyped in two additional samples of Caucasians (Amish, n = 1,149, and German children case/control subjects, n = 998) and one additional Native American (n = 2,531) sample. Small interfering RNA was used to knockdown A2bp1 message levels in mouse embryonic hypothalamus cells. RESULTS-No single variant in A2BP1 was reproducibly associated with obesity across the different populations. However, different variants within intron 1 of A2BP1 were associated with BMI in full-heritage Pima Indians (rs10500331, P = 1.9 x 10(-7)) and obesity in French Caucasian adult (rs4786847, P = 1.9 x 10(-10)) and children (rs8054147, P = 9.2 x 10(-6)) case/control subjects. Reduction of A2bp1 in mouse embryonic hypothalamus cells decreased expression of Atxn2, Insr, and Mc4r. CONCLUSIONS-Association analysis suggests that variation in A2BP1 influences obesity, and functional studies suggest that A2BP1 could potentially affect adiposity via the hypothalamic MC4R pathway. Diabetes 59:2837-2845, 201

    Characterization of the Earwig, Doru lineare, as a Predator of Larvae of the Fall Armyworm, Spodoptera frugiperda: A Functional Response Study

    Get PDF
    Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is considered as the most important pest of maize in almost all tropical America. In Argentina, the earwig Doru lineare Eschscholtz (Dermaptera: Forficulidae) has been observed preying on S. frugiperda egg masses in corn crops, but no data about its potential role as a biocontrol agent of this pest have been provided. The predation efficiency of D. lineare on newly emerged S. frugiperda larva was evaluated through a laboratory functional response study. D. lineare showed type II functional response to S. frugiperda larval density, and disc equation estimations of searching efficiency and handling time were (a) = 0.374 and (t) = 182.9 s, respectively. Earwig satiation occurred at 39.4 S. frugiperda larvae

    Modular Architecture and Unique Teichoic Acid Recognition Features of Choline-Binding Protein L (CbpL) Contributing to Pneumococcal Pathogenesis

    Get PDF
    The human pathogen Streptococcus pneumoniae is decorated with a special class of surface-proteins known as choline-binding proteins (CBPs) attached to phosphorylcholine (PCho) moieties from cell-wall teichoic acids. By a combination of X-ray crystallography, NMR, molecular dynamics techniques and in vivo virulence and phagocytosis studies, we provide structural information of choline-binding protein L (CbpL) and demonstrate its impact on pneumococcal pathogenesis and immune evasion. CbpL is a very elongated three-module protein composed of (i) an Excalibur Ca 2+ -binding domain -reported in this work for the very first time-, (ii) an unprecedented anchorage module showing alternate disposition of canonical and non-canonical choline-binding sites that allows vine-like binding of fully-PCho-substituted teichoic acids (with two choline moieties per unit), and (iii) a Ltp-Lipoprotein domain. Our structural and infection assays indicate an important role of the whole multimodular protein allowing both to locate CbpL at specific places on the cell wall and to interact with host components in order to facilitate pneumococcal lung infection and transmigration from nasopharynx to the lungs and blood. CbpL implication in both resistance against killing by phagocytes and pneumococcal pathogenesis further postulate this surface-protein as relevant among the pathogenic arsenal of the pneumococcus.We gratefully acknowledge Karsta Barnekow and Kristine Sievert-Giermann, for technical assistance and Lothar Petruschka for in silico analysis (all Dept. of Genetics, University of Greifswald). We are further grateful to the staff from SLS synchrotron beamline for help in data collection. This work was supported by grants from the Deutsche Forschungsgemeinschaft DFG GRK 1870 (to SH) and the Spanish Ministry of Economy and Competitiveness (BFU2014-59389-P to JAH, CTQ2014-52633-P to MB and SAF2012-39760-C02-02 to FG) and S2010/BMD- 2457 (Community of Madrid to JAH and FG).Peer Reviewe

    Model Organisms Reveal Insight into Human Neurodegenerative Disease: Ataxin-2 Intermediate-Length Polyglutamine Expansions Are a Risk Factor for ALS

    Get PDF
    Model organisms include yeast Saccromyces cerevisae and fly Drosophila melanogaster. These systems have powerful genetic approaches, as well as highly conserved pathways, both for normal function and disease. Here, we review and highlight how we applied these systems to provide mechanistic insight into the toxicity of TDP-43. TDP-43 accumulates in pathological aggregates in ALS and about half of FTD. Yeast and fly studies revealed an interaction with the counterparts of human Ataxin-2, a gene whose polyglutamine repeat expansion is associated with spinocerebellar ataxia type 2. This finding raised the hypothesis that repeat expansions in ataxin-2 may associate with diseases characterized by TDP-43 pathology such as ALS. DNA analysis of patients revealed that intermediate-length polyglutamine expansions in ataxin-2 are a risk factor for ALS, such that repeat lengths are greater than normal, but lower than that associated with spinocerebellar ataxia type 2 (SCA2), and are more frequent in ALS patients than in matched controls. Moreover, repeat expansions associated with ALS are interrupted CAA-CAG sequences as opposed to the pure CAG repeat expansions typically associated with SCA2. These studies provide an example of how model systems, when extended to human cells and human patient tissue, can reveal new mechanistic insight into disease

    Impact of the Mitochondrial Genetic Background in Complex III Deficiency

    Get PDF
    BACKGROUND: In recent years clinical evidence has emphasized the importance of the mtDNA genetic background that hosts a primary pathogenic mutation in the clinical expression of mitochondrial disorders, but little experimental confirmation has been provided. We have analyzed the pathogenic role of a novel homoplasmic mutation (m.15533 A>G) in the cytochrome b (MT-CYB) gene in a patient presenting with lactic acidosis, seizures, mild mental delay, and behaviour abnormalities. METHODOLOGY: Spectrophotometric analyses of the respiratory chain enzyme activities were performed in different tissues, the whole muscle mitochondrial DNA of the patient was sequenced, and the novel mutation was confirmed by PCR-RFLP. Transmitochondrial cybrids were constructed to confirm the pathogenicity of the mutation, and assembly/stability studies were carried out in fibroblasts and cybrids by means of mitochondrial translation inhibition in combination with blue native gel electrophoresis. PRINCIPAL FINDINGS: Biochemical analyses revealed a decrease in respiratory chain complex III activity in patient's skeletal muscle, and a combined enzyme defect of complexes III and IV in fibroblasts. Mutant transmitochondrial cybrids restored normal enzyme activities and steady-state protein levels, the mutation was mildly conserved along evolution, and the proband's mother and maternal aunt, both clinically unaffected, also harboured the homoplasmic mutation. These data suggested a nuclear genetic origin of the disease. However, by forcing the de novo functioning of the OXPHOS system, a severe delay in the biogenesis of the respiratory chain complexes was observed in the mutants, which demonstrated a direct functional effect of the mitochondrial genetic background. CONCLUSIONS: Our results point to possible pitfalls in the detection of pathogenic mitochondrial mutations, and highlight the role of the genetic mtDNA background in the development of mitochondrial disorders
    corecore