2,569 research outputs found

    High order symplectic integrators for perturbed Hamiltonian systems

    Get PDF
    We present a class of symplectic integrators adapted for the integration of perturbed Hamiltonian systems of the form H=A+ϵBH=A+\epsilon B. We give a constructive proof that for all integer pp, there exists an integrator with positive steps with a remainder of order O(τpϵ+τ2ϵ2)O(\tau^p\epsilon +\tau^2\epsilon^2), where τ\tau is the stepsize of the integrator. The analytical expressions of the leading terms of the remainders are given at all orders. In many cases, a corrector step can be performed such that the remainder becomes O(τpϵ+τ4ϵ2)O(\tau^p\epsilon +\tau^4\epsilon^2). The performances of these integrators are compared for the simple pendulum and the planetary 3-Body problem of Sun-Jupiter-Saturn.Comment: 24 pages, 6 figurre

    La2010: A new orbital solution for the long term motion of the Earth

    Full text link
    We present here a new solution for the astronomical computation of the orbital motion of the Earth spanning from 0 to -250 Myr. The main improvement with respect to the previous numerical solution La2004 (Laskar et al. 2004) is an improved adjustment of the parameters and initial conditions through a fit over 1 Myr to a special version of the high accurate numerical ephemeris INPOP08 (Fienga et al. 2009). The precession equations have also been entirely revised and are no longer averaged over the orbital motion of the Earth and Moon. This new orbital solution is now valid over more than 50 Myr in the past or in the future with proper phases of the eccentricity variations. Due to chaotic behavior, the precision of the solution decreases rapidly beyond this time span, and we discuss the behavior of various solutions beyond 50 Myr. For paleoclimate calibrations, we provide several different solutions that are all compatible with the most precise planetary ephemeris. We have thus reached the time where geological data are now required to discriminate among planetary orbital solutions beyond 50 Myr.Comment: 17 pages, 14 figure

    Tidal dissipation and the formation of Kepler near-resonant planets

    Full text link
    Multi-planetary systems detected by the Kepler mission present an excess of planets close to first-order mean-motion resonances (2:1 and 3:2) but with a period ratio slightly higher than the resonant value. Several mechanisms have been proposed to explain this observation. Here we provide some clues that these near-resonant systems were initially in resonance and reached their current configuration through tidal dissipation. The argument that has been opposed to this scenario is that it only applies to the close-in systems and not to the farthest ones for which the tidal effect is too weak. Using the catalog of KOI of the Kepler mission, we show that the distributions of period ratio among the most close-in planetary systems and the farthest ones differ significantly. This distance dependent repartition is a strong argument in favor of the tidal dissipation scenario.Comment: 3 pages, 3 figures, submitted for publicatio

    HD60532, a planetary system in a 3:1 mean motion resonance

    Full text link
    In a recent paper it was reported a planetary system around the star HD60532, composed by two giant planets in a possible 3:1 mean motion resonance, that should be confirmed within the next decade. Here we show that the analysis of the global dynamics of the system allows to confirm this resonance. The present best fit to data already corresponds to this resonant configuration and the system is stable for at least 5Gry. The 3:1 resonance is so robust that stability is still possible for a wide variety of orbital parameters around the best fit solution and also if the inclination of the system orbital plane with respect to the plane of the sky is as small as 15 deg. Moreover, if the inclination is taken as a free parameter in the adjustment to the observations, we find an inclination ~ 20 deg, which corresponds to M_b =3.1 M_Jup and M_c = 7.4 M_Jup for the planetary companions.Comment: 4 Pages, 4 Figures, accepted by A&

    Dissipation in planar resonant planetary systems

    Full text link
    Close-in planetary systems detected by the Kepler mission present an excess of periods ratio that are just slightly larger than some low order resonant values. This feature occurs naturally when resonant couples undergo dissipation that damps the eccentricities. However, the resonant angles appear to librate at the end of the migration process, which is often believed to be an evidence that the systems remain in resonance. Here we provide an analytical model for the dissipation in resonant planetary systems valid for low eccentricities. We confirm that dissipation accounts for an excess of pairs that lie just aside from the nominal periods ratios, as observed by the Kepler mission. In addition, by a global analysis of the phase space of the problem, we demonstrate that these final pairs are non-resonant. Indeed, the separatrices that exist in the resonant systems disappear with the dissipation, and remains only a circulation of the orbits around a single elliptical fixed point. Furthermore, the apparent libration of the resonant angles can be explained using the classical secular averaging method. We show that this artifact is only due to the severe damping of the amplitudes of the eigenmodes in the secular motion.Comment: 18 pages, 20 figures, accepted to A&

    Stability analysis of the Martian obliquity during the Noachian era

    Full text link
    We performed numerical simulations of the obliquity evolution of Mars during the Noachian era, at which time the giant planets were on drastically different orbits than today. For the preferred primordial configuration of the planets we find that there are two large zones where the Martian obliquity is stable and oscillates with an amplitude lower than 20^\circ. These zones occur at obliquities below 30^\circ and above 60^\circ; intermediate values show either resonant or chaotic behaviour depending on the primordial orbits of the terrestrial planets

    Chaotic diffusion of the Vesta family induced by close encounters with massive asteroids

    Full text link
    We numerically estimate the semi-major axis chaotic diffusion of the Vesta family asteroids induced by close encounters with 11 massive main belt asteroids : (1) Ceres, (2) Pallas, (3) Juno, (4) Vesta, (7) Iris, (10) Hygiea, (15) Eunomia, (19) Fortuna, (324) Bamberga, (532) Herculina, (704) Interamnia. We find that most of the diffusion is due to Ceres and Vesta. By extrapolating our results, we are able to constrain the global effect of close encounters with all the main belt asteroids. A comparison of this drift estimate with the one expected for the Yarkovsky effect shows that for asteroids whose diameter is larger than about 40 km, close encounters dominate the Yarkovsky effect. Overall, our findings confirm the standard scenario for the history of the Vesta family.Comment: 9 pages, 9 figures, 1 Table, submitte

    Dynamical stability analysis of the HD202206 system and constraints to the planetary orbits

    Full text link
    Long-term precise Doppler measurements with the CORALIE spectrograph revealed the presence of two massive companions to the solar-type star HD202206. Although the three-body fit of the system is unstable, it was shown that a 5:1 mean motion resonance exists close to the best fit, where the system is stable. We present here an extensive dynamical study of the HD202206 system aiming at constraining the inclinations of the two known companions, from which we derive possible ranges of value for the companion masses. We study the long term stability of the system in a small neighborhood of the best fit using Laskar's frequency map analysis. We also introduce a numerical method based on frequency analysis to determine the center of libration mode inside a mean motion resonance. We find that acceptable coplanar configurations are limited to inclinations to the line of sight between 30 and 90 degrees. This limits the masses of both companions to roughly twice the minimum. Non coplanar configurations are possible for a wide range of mutual inclinations from 0 to 90 degrees, although ΔΩ=0[π]\Delta\Omega = 0 [\pi] configurations seem to be favored. We also confirm the 5:1 mean motion resonance to be most likely. In the coplanar edge-on case, we provide a very good stable solution in the resonance, whose χ2\chi^2 does not differ significantly from the best fit. Using our method to determine the center of libration, we further refine this solution to obtain an orbit with a very low amplitude of libration, as we expect dissipative effects to have dampened the libration.Comment: 14 pages, 18 figure

    Resonance breaking due to dissipation in planar planetary systems

    Full text link
    We study the evolution of two planets around a star, in mean-motion resonance and undergoing tidal effect. We derive an integrable analytical model of mean-motion resonances of any order which reproduce the main features of the resonant dynamics. Using this simplified model, we obtain a criterion showing that depending on the balance of the tidal dissipation in both planets, their final period ratio may stay at the resonant value, increase above, or decrease below the resonant value. Applying this criterion to the two inner planets orbiting GJ163, we deduce that the current period ratio (2.97) could be the outcome of dissipation in the 3:1 MMR provided that the innermost planet is gaseous (slow dissipation) while the second one is rocky (faster dissipation). We perform N-body simulations with tidal dissipation to confirm the results of our analytical model. We also apply our criterion on GJ581b, c (5:2 MMR) and reproduce the current period ratio (2.4) if the inner planet is gaseous and the outer is rocky (as for GJ163). Finally, we apply our model to the Kepler mission's statistics. We show that the excess of planets pairs close to first order MMR but in external circulation, i.e., with period ratios P_out/P_in > (p+1)/p for the resonance (p+1):p, can be reproduced by tidal dissipation in the inner planet. There is no need for any other dissipative mechanism, provided that these systems left the resonance with non-negligible eccentricities.Comment: 14 pages, 9 figures, submitted for publicatio

    A pair of planets around HD 202206 or a circumbinary planet?

    Full text link
    Long-term precise Doppler measurements with the CORALIE spectrograph reveal the presence of a second planet orbiting the solar-type star HD202206. The radial-velocity combined fit yields companion masses of m_2\sini = 17.4 M_Jup and 2.44 M_Jup, semi-major axes of a = 0.83 AU and 2.55 AU, and eccentricities of e = 0.43 and 0.27, respectively. A dynamical analysis of the system further shows a 5/1 mean motion resonance between the two planets. This system is of particular interest since the inner planet is within the brown-dwarf limits while the outer one is much less massive. Therefore, either the inner planet formed simultaneously in the protoplanetary disk as a superplanet, or the outer Jupiter-like planet formed in a circumbinary disk. We believe this singular planetary system will provide important constraints on planetary formation and migration scenarios.Comment: 9 pages, 14 figures, accepted in A&A, 12-May-200
    corecore