289 research outputs found
Density Functional for Anisotropic Fluids
We propose a density functional for anisotropic fluids of hard body
particles. It interpolates between the well-established geometrically based
Rosenfeld functional for hard spheres and the Onsager functional for elongated
rods. We test the new approach by calculating the location of the the
nematic-isotropic transition in systems of hard spherocylinders and hard
ellipsoids. The results are compared with existing simulation data. Our
functional predicts the location of the transition much more accurately than
the Onsager functional, and almost as good as the theory by Parsons and Lee. We
argue that it might be suited to study inhomogeneous systems.Comment: To appear in J. Physics: Condensed Matte
Provable first-order transitions for liquid crystal and lattice gauge models with continuous symmetries
We consider various sufficiently nonlinear sigma models for nematic liquid
crystal ordering of RP^{N-1} type and of lattice gauge type with continous
symmetries. We rigorously show that they exhibit a first-order transition in
the temperature. The result holds in dimension 2 or more for the RP^{N-1}
models and in dimension 3 or more for the lattice gauge models. In the
two-dimensional case our results clarify and solve a recent controversy about
the possibility of such transitions. For lattice gauge models our methods
provide the first proof of a first-order transition in a model with a
continuous gauge symmetry
Possible first order transition in the two-dimensional Ginzburg-Landau model induced by thermally fluctuating vortex cores
We study the two-dimensional Ginzburg-Landau model of a neutral superfluid in
the vicinity of the vortex unbinding transition. The model is mapped onto an
effective interacting vortex gas by a systematic perturbative elimination of
all fluctuating degrees of freedom (amplitude {\em and} phase of the order
parameter field) except the vortex positions. In the Coulomb gas descriptions
derived previously in the literature, thermal amplitude fluctuations were
neglected altogether. We argue that, if one includes the latter, the vortices
still form a two- dimensional Coulomb gas, but the vortex fugacity can be
substantially raised. Under the assumption that Minnhagen's generic phase
diagram of the two- dimensional Coulomb gas is correct, our results then point
to a first order transition rather than a Kosterlitz-Thouless transition,
provided the Ginzburg-Landau correlation length is large enough in units of a
microscopic cutoff length for fluctuations. The experimental relevance of these
results is briefly discussed. [Submitted to J. Stat. Phys.]Comment: 36 pages, LaTeX, 6 figures upon request, UATP2-DB1-9
The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors
In the intermediate state of a thin type-I superconductor magnetic flux
penetrates in a disordered set of highly branched and fingered macroscopic
domains. To understand these shapes, we study in detail a recently proposed
"current-loop" (CL) model that models the intermediate state as a collection of
tense current ribbons flowing along the superconducting-normal interfaces and
subject to the constraint of global flux conservation. The validity of this
model is tested through a detailed reanalysis of Landau's original conformal
mapping treatment of the laminar state, in which the superconductor-normal
interfaces are flared within the slab, and of a closely-related straight-lamina
model. A simplified dynamical model is described that elucidates the nature of
possible shape instabilities of flux stripes and stripe arrays, and numerical
studies of the highly nonlinear regime of those instabilities demonstrate
patterns like those seen experimentally. Of particular interest is the buckling
instability commonly seen in the intermediate state. The free-boundary approach
further allows for a calculation of the elastic properties of the laminar
state, which closely resembles that of smectic liquid crystals. We suggest
several new experiments to explore of flux domain shape instabilities,
including an Eckhaus instability induced by changing the out-of-plane magnetic
field, and an analog of the Helfrich-Hurault instability of smectics induced by
an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to
  Phys. Rev. B. Higher resolution figures may be obtained by contacting the
  author
Entropy and Spin Susceptibility of s-wave Type-II Superconductors near
A theoretical study is performed on the entropy  and the spin
susceptibility  near the upper critical field  of s-wave
type-II superconductors with arbitrary impurity concentrations. The changes of
these quantities through  may be expressed as , for example, where  is the average flux density
and  denotes entropy in the normal state. It is found that the
slopes  and  at T=0 are identical, connected
directly with the zero-energy density of states, and vary from 1.72 in the
dirty limit to  in the clean limit. This mean-free-path dependence
of  and  at T=0 is quantitatively the same as that
of the slope  for the flux-flow resistivity studied
previously. The result suggests that  and  near
T=0 are convex downward (upward) in the dirty (clean) limit, deviating
substantially from the linear behavior . The specific-heat
jump at  also shows fairly large mean-free-path dependence.Comment: 8 pages, 5 figure
Codes of Fair Competition: The National Recovery Act, 1933-1935, and the Women’s Dress Manufacturing Industry
Controversial issues prevalent in today’s ready-to-wear apparel industry include the right of workers to join unions, the proliferation of sweatshops and sweatshop conditions, and design piracy. The idea of forming codes of conduct to establish criteria of ethical business practices is not new to the apparel industry. Indeed, the women’s dress manufacturing industry discussed and debated codes of fair competition under the New Deal Policies of the National Recovery Act (NRA) of 1933 to 1935. Primary sources for this study included governmental hearings in the establishment of the NRA Dress Code, The New York Times, Women’s Wear Daily, and the Journal of the Patent Office Society. The history of the NRA codes implemented in the U.S. women’s ready-to-wear apparel industry provides an important case study highlighting the difficulties and complexities of creating and achieving industry-wide standard practices through self-regulation. The failure of the NRA demonstrates that even with the joint cooperation of industry, labor, and consumer groups and the backing of the force of law, codes of fair competition proved impossible to enforce
Carrier thermalization dynamics in single zincblende and wurtzite InP nanowires
Using transient Rayleigh scattering (TRS) measurements, we obtain photoexcited carrier thermalization dynamics for both zincblende (ZB) and wurtzite (WZ) InP single nanowires (NW) with picosecond resolution. A phenomenological fitting model based on direct band-to-band transition theory is developed to extract the electron-hole–plasma density and temperature as a function of time from TRS measurements of single nanowires, which have complex valence band structures. We find that the thermalization dynamics of hot carriers depends strongly on material (GaAs NW vs InP NW) and less strongly on crystal structure (ZB vs WZ). The thermalization dynamics of ZB and WZ InP NWs are similar. But a comparison of the thermalization dynamics in ZB and WZ InP NWs with ZB GaAs NWs reveals more than an order of magnitude slower relaxation for the InP NWs. We interpret these results as reflecting their distinctive phonon band structures that lead to different hot phonon effects. Knowledge of hot carrier thermalization dynamics is an essential component for effective incorporation of nanowire materials into electronic devices
Observations of the microphysical evolution of convective clouds in the southwest of the United Kingdom
The COnvective Precipitation Experiment (COPE) was designed to investigate the origins of heavy convective precipitation over the southwestern UK, a region that experiences flash flooding due to heavy precipitation from slow-moving convective systems. In this study, the microphysical and dynamical characteristics of developing turrets during 4 days in July and August 2013 are analyzed. In situ cloud microphysical measurements from the University of Wyoming King Air and vertically pointing W-band radar measurements from Wyoming Cloud Radar are examined, together with data from the ground-based NXPol radar.
The 4 days presented here cover a range of environmental conditions in terms of wind shear and instability, resulting in a similarly wide variability in observed ice crystal concentrations, both across days as well as between clouds on individual days. The highest concentration of ice was observed on the days in which there was an active warm-rain process supplying precipitation-sized liquid drops. The high ice concentrations observed ( > 100L−1) are consistent with the production of secondary ice particles through the Hallett–Mossop process. Turrets that ascended through remnant cloud layers above the 0°C level had higher ice particle concentrations, suggesting that entrainment of ice particles from older clouds or previous thermals may have acted to aid in the production of secondary ice through the Hallett–Mossop process. Other mechanisms such as the shattering of frozen drops may be more important for producing ice in more isolated clouds
Global Investments in Pandemic Preparedness and COVID-19: Development Assistance and Domestic Spending on Health Between 1990 and 2026
Background The COVID-19 pandemic highlighted gaps in health surveillance systems, disease prevention, and treatment globally. Among the many factors that might have led to these gaps is the issue of the financing of national health systems, especially in low-income and middle-income countries (LMICs), as well as a robust global system for pandemic preparedness. We aimed to provide a comparative assessment of global health spending at the onset of the pandemic; characterise the amount of development assistance for pandemic preparedness and response disbursed in the first 2 years of the COVID-19 pandemic; and examine expectations for future health spending and put into context the expected need for investment in pandemic preparedness. Methods In this analysis of global health spending between 1990 and 2021, and prediction from 2021 to 2026, we estimated four sources of health spending: development assistance for health (DAH), government spending, out-ofpocket spending, and prepaid private spending across 204 countries and territories. We used the Organisation for Economic Co-operation and Development (OECD)’s Creditor Reporting System (CRS) and the WHO Global Health Expenditure Database (GHED) to estimate spending. We estimated development assistance for general health, COVID-19 response, and pandemic preparedness and response using a keyword search. Health spending estimates were combined with estimates of resources needed for pandemic prevention and preparedness to analyse future health spending patterns, relative to need. Findings In 2019, at the onset of the COVID-19 pandemic, US7·3 trillion (95% UI 7·2–7·4) in 2019; 293·7 times the 43·1 billion in development assistance was provided to maintain or improve health. The pandemic led to an unprecedented increase in development assistance targeted towards health; in 2020 and 2021, 37·8 billion was provided for the health-related COVID-19 response. Although the support for pandemic preparedness is 12·2% of the recommended target by the High-Level Independent Panel (HLIP), the support provided for the healthrelated COVID-19 response is 252·2% of the recommended target. Additionally, projected spending estimates suggest that between 2022 and 2026, governments in 17 (95% UI 11–21) of the 137 LMICs will observe an increase in national government health spending equivalent to an addition of 1% of GDP, as recommended by the HLIP. Interpretation There was an unprecedented scale-up in DAH in 2020 and 2021. We have a unique opportunity at this time to sustain funding for crucial global health functions, including pandemic preparedness. However, historical patterns of underfunding of pandemic preparedness suggest that deliberate effort must be made to ensure funding is maintained
- …
