We propose a density functional for anisotropic fluids of hard body
particles. It interpolates between the well-established geometrically based
Rosenfeld functional for hard spheres and the Onsager functional for elongated
rods. We test the new approach by calculating the location of the the
nematic-isotropic transition in systems of hard spherocylinders and hard
ellipsoids. The results are compared with existing simulation data. Our
functional predicts the location of the transition much more accurately than
the Onsager functional, and almost as good as the theory by Parsons and Lee. We
argue that it might be suited to study inhomogeneous systems.Comment: To appear in J. Physics: Condensed Matte