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Abstract: We consider various sufficiently nonlinear vector models of ferromagnets,
of nematic liquid crystals and of nonlinear lattice gauge theories with continuous sym-
metries. We show, employing the method of Reflection Positivity and Chessboard Esti-
mates, that they all exhibit first-order transitions in the temperature, when the nonlinearity
parameter is large enough. The results hold in dimension 2 or more for the ferromagnetic
models and the RPN−1 liquid crystal models and in dimension 3 or more for the lattice
gauge models. In the two-dimensional case our results clarify and solve a recent con-
troversy about the possibility of such transitions. For lattice gauge models our methods
provide the first proof of a first-order transition in a model with a continuous gauge
symmetry.

1. Introduction

In this paper we prove a number of results showing that nearest neighbor models with
a sufficiently nonlinear, rotation-invariant, nearest-neighbour interaction – sufficiently
nonlinear meaning that the nearest neighbour interaction has the shape of a deep and nar-
row well – show a first-order transition in temperature. Part of our results have appeared
in [16].

We remind the reader that first-order transitions occur when the free energy density
(or pressure) at some values of the thermodynamic parameters is non-differentiable as
a function of one of the parameters in the Hamiltonian. In our examples this parameter
will be the temperature. Equivalently, at these parameter values different infinite-volume
Gibbs measures exist which have different expectation values for an observable dual to
the nondifferentiability parameter. In our examples this observable will be the energy. For
further aspects of Gibbs measure theory and the associated thermodynamic formalism
we refer to [57, 22, 24].
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An example of a model which has appeared in the literature and which can be treated
by our methods is given by the ferromagnetic Hamiltonian

H = −J
∑

<i,j>∈Z2

(
1 + cos

(
φi − φj

)

2

)p
,

with p large.
Our results confirm earlier numerical work on this model [15, 7], which, however,

has been contested by various authors. For some of this literature, see [27, 30, 58, 40,
29, 3].

Our analysis is not restricted to ferromagnets, but also applies to RPN−1 (liquid-
crystal) models (such as were first introduced by Lasher and Lebwohl [37, 36]) and to
lattice gauge models (which are invariant under local, as opposed to global, rotation
symmetries).

We find that these nonlinear ferromagnetic, liquid-crystal and lattice gauge mod-
els, (with either abelian or non-abelian symmetries) all have 1st order transitions in the
temperature.

The standard ferromagnetic N -vector models are either believed or sometimes rig-
orously known to have 2nd order transitions in d = 3 or higher, a “Kosterlitz-Thouless”
transition in d = 2, N = 2, and no transition for d = 2 and higherN .1 In the XY-model
(N = 2) for either d = 2 or high d these results are rigorous, for the other models there
is a consensus based on both numerics and heuristic arguments.

In contrast, for the standard versions of the liquid crystal and lattice gauge models,
as well as for very non-linear ferromagnetic σ -models, both numerics and high temper-
ature series suggested the existence of 1st order transitions, despite some theoretical and
numerical analyses originally either suggesting 2nd order transitions, no transitions at
all, or Kosterlitz-Thouless type transitions. Furthermore, the phase transition in the 3d
liquid crystal models was observed to become more strongly first order when a nonlinear
term was added. For some of this literature, see e.g. [34, 37, 36, 17, 1, 55, 9, 44, 50, 52,
54, 25, 48, 38, 41, 20, 45, 46] and references therein. Moreover, in the limit where N
approaches infinity (the spherical limit) 1st order transitions were found, in dimension 2
or more [33, 56, 54]. This spherical limit result also holds for our nonlinear interactions
in the ferromagnetic case [8]. Whether such a first-order transition can also occur for
finite N larger than 3 in d = 2, or whether it might be an artefact of the spherical limit
has for a long time been a matter of controversy (see for example [54, 56]). In fact, Sokal
and Starinets described the existence of such a first-order transition as a “pathology”.

Our result finally settles this question: first-order phase transitions for models with
a continuous symmetry in d = 2 can occur, despite the conjecture to the contrary of
[54]. Our results in d = 2 are thus essentially in agreement with the analysis of [56].
In contrast to what was suggested in most earlier analyses, the symmetry or the low-
temperature properties of the model do not play a role of any great importance, and
neither do the nature of the topological excitations or the spin-dimensionality. In fact,
for our nonlinear choice of interaction the spin-dimensionality N does not need to be
large and can be as small as 2. Also the lattice dependence of the phenomenon found
in [56] seems somewhat of an artefact which disappears if one varies the nonlinearity

1 The rigorous results about ferromagnetic 2-component models are described for example in [18].
A more recent result on the Kosterlitz-Thouless point of the 2-dimensional XY model can be found in
[10]. The description of critical (2nd-order transition) points and the behaviour of their exponents as is
expected in the physics literature can be found for example in various contributions to [12].
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parameter. The wide occurrence of first-order transitions in liquid-crystal and lattice
gauge models indicates that a proof in these types of models may be of even more direct
physical relevance than in the case of ferromagnets.

The main ingredient of our proofs is a similarity between such nonlinear models and
high-q Potts models, which allows one to adapt proofs for Potts models, such as were
first developed in [31], and based on [14], to prove first-order transitions in the tempera-
ture parameter. We remark that some similar results were found by L. Chayes [11], also
making use of the Potts resemblance. See also [2], where high temperature uniqueness
was proven, in almost the whole high-temperature region. The arguments for showing
the existence of first-order transitions, such as have been used for Potts ferromagnets in
d at least 2, apply to the ferromagnetic and liquid-crystal models, those developed for
Potts lattice gauge models in d at least 3 [31], apply to the lattice gauge models.

The fact that our proofs are insensitive to the nature of the phases between which
the transition takes place implies that one might have in the ferromagnetic or liquid-
crystal models a transition between a disordered high-temperature phase and either a
(ferromagnetically or nematically) ordered, a Kosterlitz-Thouless or a disordered phase
at low temperatures. Similarly one might find a transition either between a confining and
a nonconfining – Coulomb-like – phase or between two confining phases in the lattice
gauge models. Which one occurs in a particular case should depend on dimension and/or
symmetry of the system, but our methods do not provide information on the low temper-
ature regime, although in some cases known methods may apply. Another consequence
of our methods is that we show examples where there are additional transitions between
distinct ordered or distinct Kosterlitz-Thouless low-temperature phases.

In particular, we emphasize that our proofs are also insensitive as to whether the
symmetry group of the lattice gauge model is abelian – in which case it is expected that
in 4 dimensions a transition between a confined and a Coulomb-like phase occurs [26,
21] or nonabelian, in which case both states are expected to be confining (this is also
expected in general in d = 3). For a heterodox discussion on the difference between
what is to be expected in abelian and nonabelian models, including some history of this
problem cf. [42].

2. Notation and Results

We consider a lattice Z
d , and either spin models, in which the random variables σi live

on the sites, or lattice gauge models, where the variables live on the bonds (or links) of
the lattice. The parameters of our models are the spatial dimension d, the spin-dimension
N , and the nonlinearity parameter p. The “standard” versions of the models are obtained
by taking p = 1.

For ferromagnetic models the variables are N -component unit vectors, living on the
sphere S

N−1. We will present the argument in the 2-component case in detail, in the
general case the proof is essentially the same. In theN = 2 case we also sometimes use
angle variables φi to denote the spins. The ferromagnetic models first considered in [15]
and generalized to N = 3 in [7], were given by

H = −J
∑

<i,j>∈Z2

(
1 + cos

(
φi − φj

)

2

)p
. (1)

In fact the precise shape of the well-potential is not very important, as long as it is narrow
enough. For convenience we first present the argument for a rectangular-well potential,
and afterwards discuss the necessary adaptations to treat general wells.
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The property we will always need is Reflection Positivity (RP). 2 This will hold for all
our examples, but, as is well known, it restricts us to nearest-neighbour-cube interactions
(C-interactions, in the terminology of [23]) and in particular prevents us from extending
our proof to quantum spin models.

We denote our spin variables by σ , and we consider interactions U which are near-
est neighbor, and which contain only functions of inner products between neighboring
spins.

Thus the general form of our model is:

H = −
∑

<i,j>∈Zd

U(σi · σj ). (2)

We will also use (by abuse of notation) the angle between neighboring spins as the
argument of the function U , as we will consider U ’s which are rotation invariant, and
thus only depend on this angle.

When U has a maximum at 1 and is a decreasing function of the cosine of the angle
φ between neighboring spins, the model is ferromagnetic.

We begin with the simplest case of a square-well potential in two-dimensions, with
classicalXY -spins. The parameter ε describing the width of the well will play the same
role of a small parameter here as 1

q
does in the q-state Potts model.

Theorem 1. Let U(φ) = 1 for |φ| ≤ ε, and U = 0 otherwise, d = 2 and N = 2. For ε
small enough this model has a first-order phase transition in temperature. In particular,
there exists a temperature where at least two different Gibbs measures with different
energy densities coexist.

Proof. We introduce the projection Pob , which is the characteristic function of the event
that the bond b is “ordered”, that is the angle between the two spins at the ends of the
bond b differ by less than ε, and Pdb , the indicator of the event “b is disordered”, that is
the spins at the ends of b differ by more than ε. It is immediate that the expectation of
Pdb at high temperatures is close to one, and that the expectation of Pob is close to one
at low temperatures. We need to show that ordered and disordered bonds tend not to be
neighbours at all temperatures. Thus we need to estimate the expectation of Pdb P

o
b′ , with

b, b′ two orthogonal bonds sharing the same site. Once we have it, the proof follows,
see [51].

For this it is sufficient to apply a chessboard estimate, following the approach of
[14, 31], going back to [19], and described in e.g. [51, 23]. We follow in particular
[51]. Our two-dimensional model has the RP property with respect to reflections in lines
{x ± y = k} , k = ...,−1, 0, 1, ... . We need to estimate the probability of the occurrence
of a “universal contour”, which in our case will be the set of configurations such that in
a toroidal volume � consisting of L2 sites, (where L is a multiple of 4) a quarter of the
sites – those belonging to diagonals chosen periodically at distance 4 – are surrounded
by ordered bonds, and another quarter of the sites, along the diagonals halfway, are sur-
rounded by disordered bonds (compare [51], Fig. 6). We have thus alternating diagonal
strips of ordered and disordered squares. Once we have obtained this estimate, we can
apply a Peierls-type contour argument.

To estimate this universal-contour probability, we have to estimate the partition func-
tion over all configurations in which the universal contour occurs, from above. We do it

2 The method of reflection positivity was developed by F. J. Dyson, J. Fröhlich, R. B. Israel, E. H. Lieb,
B. Simon and T. S. Spencer in a series of papers. It is described in the last chapters of [23] or in [51].
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by noticing that for three quarters of the sites one integrates over an interval of at most
ε, and that half of the (2�) bonds contribute an energy β, from which we obtain

ZL,univcont (β, ε) ≤ Cst eβL
2
ε

3
4L

2
eO(L).

We estimate the full partition function from below by

ZL(β, ε) ≥ max[1, ZoL].

The lower bound 1 follows from the positivity of the function U .
In the bound for the ordered partition function ZoL, we can restrict the integration

over spin variables at each site, to the interval [− ε
2 ,

ε
2 ]. This implies immediately that

ZoL ≥ εL
2
e2βL2

(which is larger than 1 for β ≥ β0 = − lnε
2 , which in its turn gives an approximate value

for the transition temperature), so we obtain

ZL,univcont (β, ε)

ZL(β, ε)
≤ ε

O
(
L2
4

)

.

This is immediate for β ≥ β0, and for β ≤ β0 we use the observation that eβ ≤ eβ0 =
ε−

1
2 . ��

Remark 1. In 2-dimensional models, the Mermin-Wagner theorem [39] and its exten-
sion, the Dobrushin-Shlosman theorem [13] (a recent version of which also includes a
non-continuous interaction such as the one under consideration here [28]), imply that
all possible Gibbs measures are rotation-invariant.

Remark 2. Of course, the above theorem can be extended to higher dimensions d > 2.
The only difference in the proof would be that one can not use the RP in the 45◦ planes,
so one uses instead RP in the coordinate planes and their integer shifts, i.e. in the
planes {xi = k} , i = 1, 2, ..., d, k = ...,−1, 0, 1, .... That changes the definition of the
universal contour. As a result, the corresponding estimates become somewhat weaker,
but the conclusions of the theorem still hold. The generalization toN > 2 is immediate.

Our methods, combined with the technique of [43], also imply that more than one tran-
sition can occur, even infinitely many, at an infinite sequence of lower and lower tempera-
tures, between all paramagnetic (d = 2, n ≥ 3), all Kosterlitz-Thouless (d = 2, n = 2),
or all ordered (d ≥ 3) phases.

Choose e.g. for the potential function U a summable sum of characteristic functions
on fastly decreasing intervals : U(x) = ∑

n 2−n1εn(x), with εn(= ε3
n−1) = ε3n−1

, with
the first ε small enough.

Ground states for this interaction with wells in wells, which for obvious reasons we
will call the Seuss – or cat-in-the-hat-on-cat-in-the-hat-... – potential [50] 3, are perfectly
ordered, and the model is clearly ferromagnetic.At a sequence of increasing inverse tem-
peratures βn one has first-order transitions, where one has at βn coexistence of Gibbs
measures, one concentrated on configurations with most bonds in well n, evenly dis-
tributed, and another on configurations with most bonds in well n+ 1. The widths and
depths of the successive wells are chosen in such a way that the sequence of inverse
transition temperatures is growing like 3

2
n
.

3 We hope the reader – or his-her children – has a copy available; unfortunately the copyright costs of
providing the picture here go beyond our grant.
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Theorem 2. For ε small enough, the above Seuss-model has an infinite set of tempera-
tures where first order transitions in the temperature occur, for all N ≥ 2, d ≥ 2.

Our next step indicates how to generalize from rectangular wells to polynomial wells.

Theorem 3. Consider the model (N = 2, d = 2) with nearest-neighbor Hamiltonian

H = −J
∑

<i,j>∈Z2

(
1 + cos

(
φi − φj

)

2

)p
. (3)

For p large enough this model has a first-order transition.

Proof. We employ the fact that for small difference angles cos(φi − φj ) is approxi-

mately 1 −O(
[
φi − φj

]2
), and furthermore that limp→∞(1 − 1

p
)p = 1

e
. This suggests

to choose ε(p) to be 1√
p

. The difference with the rectangular-well model is that now the
distinction between ordered and disordered bonds becomes somewhat arbitrary, and we
make a slightly different choice, namely we call a bond ordered if

∣∣φi − φj
∣∣ ≤ ε(p) ≡ C√

p
.

We will choose C large, which implies that all disordered bonds have low energy
(close to zero), which we will need in the estimate on the upper bound for the universal
contour partition function.

We also introduce the notion of “strongly ordered” bonds, which have their energies
close to maximal energy: a bond i, j is strongly ordered if

∣∣φi − φj
∣∣ ≤ 1

C
√
p
.

We will use them in estimating the ordered partition function ZoL from below.
We then have, similarly to before, ZL(β, p) ≥ max[1, ZoL]. We bound the ordered

partition functionZoL from below by integrating over the spin variables at each site within
the strongly ordered interval [− 1

C
√
p
, 1
C

√
p

]. There the energy is close to its mininum,
−J . Thus we obtain

ZL(β, p) ≥
(

1

C
√
p

)L2

e
2βJ

(
1−O

(
1
C2

)
L2
)

.

For the ZL,univcont we obtain similarly as before,

ZL,univcont (β, p) ≤ e
βJL2[1+O(e−C2

)]
(
C√
p

) 3
4L

2+O(L)
.

The rest of the argument is identical to the one before, once we choose C large
enough. For example a choice C = pδ for some small positive δ will do. ��

Again, generalizations to higher N and d are immediate.

Remark 3. The transition, and our proof for it, persists if one applies a small external
field; thus it is immediately clear that no Lee-Yang circle theorem will hold, in contrast
to the standard ferromagnetic XY-models.
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Remark 4. We know that at low temperatures percolation of ordered bonds holds [23];
it follows from our results that the associated percolation transition is also first order.

For liquid crystalRPN−1 models one either considers variables – usually denoted ni
– which live on the projective manifold, obtained by identifying a point on theN -sphere
with its antipodal point, or equivalently one can consider ordinary spins on theN -sphere,
and divide out this “local gauge symmetry” afterwards. The last approach is the route
we will pursue, as it allows us to literally apply the identical proof in the ferromagnetic
and the liquid crystalline cases.

Thus we consider Hamiltonians of the form

H = −J
∑

<i,j>∈Z2

(
1 + cos2

(
φi − φj

)

2

)p
. (4)

In the ferromagnetic case we called a bond “ordered” if the angle θ between two neigh-
boring sites is small enough. Here we call it ordered if the angle θmodπ is small enough.
Then the argument goes through without any changes. There is a first-order phase tran-
sition for p chosen large enough (in general the values of p for which the proof works
depend onN and d) between a high-temperature regime, in which most nearest neighbor
bonds are disordered, and a low-temperature regime, in which most nearest neighbor
bonds are ordered. This holds for each dimension at least 2, and whereas the Mermin-
Wagner theorem excludes nematic long-range order in d = 2 [39], in d = 3 and higher
long-range order, it will occur [4]. Between the ordered and the disordered phase(s) free
energy contours occur, whose probabilities are estimated to be uniformly small via a
contour estimate valid over a whole temperature interval. In the contour estimate again
use is made of the Reflection Positivity of the model.

Theorem 4. For any nonlinear RPN−1 model in dimension 2 or more and p high
enough, there is a first order transition, that is, there exists a temperature at which
the free energy is not differentiable in the temperature parameter. In particular, there
exists a temperature where at least two different Gibbs measures with different energy
densities coexist.

For lattice gauge models the variables are elements of a unitary representation of
a compact continuous gauge group, e.g. U(1), SU(n), or sums thereof [53]. Here we
present the argument in the simplest case of aU(1)-invariant interaction in 3 dimensions:

H = −J
∑

plaquettes P∈Z3

L (UP ) , (5)

with L(UP ) =
(

1+cos
(
φe1+φe2 −φe3−φe4

)

2

)p
. Here the ei denote the 4 edges making up

the plaquette P .
The effect of choosing the nonlinearity parameter p high is again since the potential,

although it still has quadratic minima, becomes much steeper and narrower. In this way
one constructs in a certain sense a “free energy barrier” between ordered and disordered
phases.

The lattice gauge model proof becomes similar to the arguments from [31]. When
the product over the link variables is sufficiently close to unity, we’ll call the plaquette
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“ordered”, “disordered” otherwise. This distinction corresponds to unfrustrated and frus-
trated plaquettes in the Potts case. We will sketch the argument for the toy model where
the potential L(U) is chosen to be 1 if the sum φP of the oriented angles along the
plaquette P is between − ε

2 and + ε
2 and zero otherwise. The generalization to the non-

rectangular-well potentials can then be done in the same way as before. The correspon-
dence again is that ε is of order O( 1√

p
).

Our strategy is to find bounds for free energy contours between ordered phases,
in which one has mainly cubes with 6 ordered plaquettes, and disordered phases, in
which most cubes have 6 disordered plaquettes. We need thus to estimate the weights
of contours consisting of cubes which are neither ordered nor disordered. The number
of possibilities for such cubes includes the 7 possibilities given in [31], plus we have
now the additional 8th possibility of having cubes with one disordered plaquette and five
ordered ones.

For the partition function ZL on a cube BL of size L3 we use the (quite rough) lower
bound

ZL ≥ max(ZdL, Z
o
L), (6)

where ZdL (resp., ZoL) is part of the partition function, calculated over all configurations
which have all plaquettes disordered (resp., mostly ordered). For the disordered partition
function ZdL we obtain the lower bound (1 − 4ε)3L

3
(we take a normalized reference

measure, giving a weight 1 to each link).
For the ordered partition function ZoL we proceed as follows: we first choose a set of

bonds TL in BL, which is a tree, passing through every site. For example, we can put
into TL all vertical bonds – z-bonds – except those connecting sites with z-coordinates
0 and 1, plus all y-bonds in the plane z = 0, except those connecting the sites with
y-coordinates 0 and 1, plus all x-bonds of the line y = z = 0, except the one between
the sites (0, 0, 0) and (1, 0, 0) . The site (0, 0, 0) can be taken as a root of TL. Note that
the number of bonds in TL is L3 − 1. Therefore it is not surprising (and easy to see) that
for every edge configuration φ = {φb, b ∈ TL} there exists a unique site configuration
ψ = ψφ = {ψx, x ∈ BL} , such that the following holds:

1. Let gψ denote the gauge transformation, defined by the configuration ψ. Then(
gψ ◦ φ)

∣∣∣
b
= 1 for every bond b ∈ TL;

2. ψ(0,0,0) = 1.

For every family of bonds S ⊂ BL let us define a bigger family C (S) , by the rules:

1. S ⊂ C (S) ,

2. for every four bonds {b1, . . . , b4} ,making a plaquette, such that three of them are in
S, we have {b1, . . . , b4} ⊂ C (S) .

Then we can consider also the sets C2 (S) = C (C (S)) , C3 (S) , and so on. Define
C (S) = ∪kCk (S) . Note that the number of plaquettes in C (TL) is 3L3 − O

(
L2
)
.

We claim now that for every configuration φTL = {φb, b ∈ TL} one can specify (in a
continuous way) a collection of arcs

{
Ib = Ib

(
φTL

) ⊂ S1, b ∈ C (TL) \ TL, |Ib| = ε
4

}
,

such that for every configuration φ on BL, which coincides with φTL on TL, and for
which the values φb on the bonds b ∈ C (TL) \ TL belong to the above segments Ib, all
the plaquettes that fall into C (TL) are non-frustrated. That would imply that

ZoL ≥
(ε

4

)2L3

exp
{

3J
(
L3 −O

(
L2
))}
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by Fubini’s theorem. To see the validity of our claim, consider first the case when the
configuration φTL ≡ 1 ∈ S1 (here 1 is the neutral element). Then the choice of the
segments Ib is easy: Ib (1) = [− ε

8 ,
ε
8

]
for every b ∈ C (TL) \ TL. For a general φTL let

us take the corresponding gauge transformation gφTL (which is the identity for φTL ≡ 1),
and we define our segments by

Ib
(
φTL

) =
(
gφTL

)−1
Ib (1) .

This provides a lower bound

ZL ≥ max

[
(1 − 4ε)3L

3
,
(ε

4

)2L3

exp
{

3J
(
L3 −O

(
L2
))}]

. (7)

This bound on the partition function as the maximum of the ordered and disordered term
is similar to the argument in [16]. It plays the same role as the bound in terms of a fixed
energy partition function given in [31].

To obtain our contour estimates, by Reflection Positivity we need to estimate the
partition functions of configurations constrained to have a “universal contour”. The esti-
mates of the 7 types of universal contours mentioned in [31] are of a similar form as in
that paper with the number of Potts states q replaced by 1

ε
, up to some constant. The

universal contour due to the new case of cubes with one disordered plaquette consists of
configurations in which the horizontal plaquettes in every other plane are disordered, and
all the other ones are ordered. These configurations have a similar entropy contribution
to the partition function as the ordered configurations, but the energy per cube is 5

6 of
that of a cube in the fully ordered situation. For ε small enough (which corresponds
to p large enough) also such a contour is suppressed exponentially in the volume. The
combinatorial factor in the contour estimate changes by some finite constant, which
choosing ε small enough takes care of.

To summarize we have obtained the following result:

Theorem 5. For lattice gauge models with plaquette action
(

1+L(UP )
2

)p
, (whereL(UP )=

T r(UP +U∗
P )) in dimension 3 and more, and p high enough, there is a first order tran-

sition, that is there exists a temperature at which the free energy is not differentiable in
the temperature parameter. In particular, there exists a temperature where at least two
different Gibbs measures with different energy densities coexist.

Here U∗
P denotes the adjoint operator of UP .

3. Summary and Discussion

Our results provide a number of answers to questions which were raised before. As we
discussed in the introduction, the nonlinear two-dimensional ferromagnetic models were
studied numerically, and our results fully confirm what was found in [15, 7]. Our work
provides to our knowledge the first case in which a first order transition for a lattice
gauge model with a continuous gauge symmetry group is rigorously obtained. Whereas
the example of the Potts lattice gauge model in d = 3 or higher is between a confining
and a nonconfining phase [32, 35], in our theorem this is to be expected in d = 4, with
U(1) symmetry only. For d = 3 and also for SU(n) in d = 4 we conjecture that confined
phases exist on both sides of the phase transition.



30 A.C.D. van Enter, S.B. Shlosman

Our proof only gives results for very high values of the nonlinearity parameter p.
We will discuss some further aspects of what may actually be the p-values for which
to expect first-order transitions, and what one might hope to prove. The recent work of
Biskup and Chayes [5] shows that if a reflection positive model has a phase transition in
mean field theory, then also at sufficiently high dimension a first-order transition occurs.
They include in their discussion the RPN−1 model for N = 3, for which even for the
standard choice p = 1 (so there is no strong nonlinearity in the interaction), a first-order
transition is derived. The mean field analysis of [6] indicates that a similar result for the
ferromagnetic case holds if p = 3, and here a sufficiently strong nonlinearity is indeed
needed. For lattice gauge models on the other hand, also the standard (p = 1) actions
lead to first-order transitions in mean-field theory ([59], Sect. 34.4), which indicates a
first-order transition in sufficiently high dimension.

Similarly, if one believes that here the spherical (N to infinity) limit is not singular
(which has been a matter of controversy itself), then for the square lattice, N large and
p larger than 6 the sufficiently nonlinear ferromagnet might have a first-order transition,
while for the RPN−1 case on the square or triangular lattice even for p = 1 a first order
transition occurs, although for the hexagonal lattice one presumably needs a higher value
of p [54, 56].

As mentioned before, numerical work suggests that in the standard (p = 1) Lebwohl-
Lasher model withN = 3 in d = 3, as well as in theU(1) -lattice-gauge model in d = 4,
a first order transition should occur; however, this seems far away from any provable
result.
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24. Georgii, H.-O., Häggström, O., Maes, C.: The random geometry of equilibrium phases. Phase tran-
sitions and critical phenomena, C. Domb, J.L. Lebowitz, eds., London, Academic Press, to appear

25. Di Giacomo, A.: Investigating QCD Vacuum on the lattice. Nucl. Phys. Proc. Suppl. 108, 21–28
(2002)

26. Guth, A.H.: Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory.
Phys. Rev. D 21, 2291–2307 (1980)

27. van Himbergen, J.E.: From continuous to first-order transition in a simple XY model. Phys. Rev.
Lett. 53, 5–8 (1984)

28. Ioffe, D., Shlosman, S.B., Velenik,Y.: 2D Models of Statistical Physics with Continuous Symmetry:
The Case of Singular Interactions. Commun. Math. Phys. 226, 433–454 (2002)
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