100 research outputs found

    Stadsläkning genom stadsgata

    Get PDF
    Befolkningsmängden i Malmö kommer år 2030 att vara uppe i cirka 400 000 invånare, vilket innebär en ökning med cirka 100 000 personer. När befolkningsmängden ökar innebär det att fler människor kommer att röra sig i staden och en utmaning är ökade trafikvolymer och trängsel. En ökad biltrafik leder med största sannolikhet till att gator som redan utgör befintliga barriärer förstärks samt skapande av nya barriärer på andra gator. Bilismens framfart har lett till att de fysiska avstånden mellan aktiviteter och funktioner har ökat och bilresandet blivit en nödvändig del av människors liv. Malmö stads vision är att förändra infartsleder och trafikleder i staden till stadshuvudgator då det finns en förhoppning att förändra bilismens roll i staden, ge plats åt cyklister och fotgängare samt binda samman staden. Vi använder oss av begreppet stadsgata i uppsatsen. Det övergripande syftet med magisterarbetet var att, med utgångspunkt i teorier om den hållbara staden, undersöka hur gestaltningen av Malmös framtida stadsgator kan påverka och skapa en sammanhängande stad. Den empiriska studien av Nobelvägen syftar till att undersöka vilka möjligheter som finns att omvandla tungt trafikerade gator till stadsgator, hur de bör utformas och vilka effekter detta kan få. Resultaten av den empiriska studien visar att Nobelvägens fysiska utformning försvårar korsandet för cyklister och fotgängare. Genom att minska utrymmet för biltrafik och istället ge fotgängare och cyklister mer plats i aturummet, går det att dämpa biltrafikens hastighet och göra gatumiljön säkrare. Stadsgatans huvuduppgift är att binda samman staden, skapa samband och göra staden till en helhet. Dock är människors vanor och beteenden svårare att påverka än den fysiska miljön samtidigt som de fysiska förutsättningarna kan hjälpa till att underlätta ett visst beteende. Är det lättare att cykla och gå, jämfört med att ta bilen kan det påverka människors trafikvanor.The population of Malmö, the year 2030 will be approximately 400 000 inhabitants, which represents an increase of approximately 100 000 people. As the population increases, it means that more people will move in the city and a challenge is increased traffic volumes and congestion. Increased traffic leads most likely to enhanced barriers on existing streets and could also create new barriers on other streets. The entry of vehicles has led to increased physical distances between activities and functions and car travel has become an essential part of people’s lives. Malmö’s vision is to change the arterial roads and thoroughfares of the city to stadshuvudgator (city main streets) there is an expectation of changing the motoring role in the city, provide space for cyclists and pedestrians, as well as linking the city together. We use term stadsgata (city street) in this paper. The overall objective of the master thesis was, through theories of the sustainable city, explore how the design of Malmo’s future stadsgata can influence and create a coherent city. The empirical study of Nobelvägen aims to explore the possibilities to convert the heavily trafficked streets to stadsgator, how they should be structured and what effects it may have. The results of the empirical study shows that the physical design of Nobelvägen makes crossing the street difficult for cyclists and pedestrians. By reducing the space for car traffic and instead give pedestrians and cyclists more space in the street, it’s possible to reduce car traffic speed and make the street environment safer. The task of stadsgata is to connect the city, create relationships and a coherent city. However, people’s habits and behaviour are more difficult to influence than the physical environment, while the physical environment can help to facilitate a particular behaviour. If it is easier to cycle and walk, as compared with taking the car, it can affect people’s transport habits

    Effect of a weight loss intervention on anthropometric measures and metabolic risk factors in pre- versus postmenopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The present study examines changes in body weight, fat mass, metabolic and hormonal parameters in overweight and obese pre- and postmenopausal women who participated in a weight loss intervention.</p> <p>Methods</p> <p>Seventy-two subjects were included in the analysis of this single arm study (premenopausal: 22 women, age 43.7 ± 6.4 years, BMI 31.0 ± 2.4 kg/m<sup>2</sup>; postmenopausal: 50 women, age 58.2 ± 5.1 years, BMI 32.9 ± 3.7 kg/m<sup>2</sup>). Weight reduction was achieved by the use of a meal replacement and fat-reduced diet. In addition, from week 6 to 24 participants attended a guided exercise program. Body composition was analyzed with the Bod Pod<sup>®</sup>. Blood pressures were taken at every visit and blood was collected at baseline and closeout of the study to evaluate lipids, insulin, cortisol and leptin levels.</p> <p>Results</p> <p>BMI, fat mass, waist circumference, systolic blood pressure, triglycerides, glucose, leptin and cortisol were higher in the postmenopausal women at baseline.</p> <p>Both groups achieved a substantial and comparable weight loss (pre- vs. postmenopausal: 6.7 ± 4.9 vs 6.7 ± 4.4 kg; n.s.). However, in contrast to premenopausal women, weight loss in postmenopausal women was exclusively due to a reduction of fat mass (-5.3 ± 5.1 vs -6.6 ± 4.1 kg; p < 0.01). In premenopausal women 21% of weight loss was attributed to a reduction in lean body mass.</p> <p>Blood pressure, triglycerides, HDL-cholesterol, and glucose improved significantly only in postmenopausal women whereas total cholesterol and LDL-cholesterol were lowered significantly in both groups.</p> <p>Conclusion</p> <p>Both groups showed comparable weight loss and in postmenopausal women weight loss was associated with a pronounced improvement in metabolic risk factors thereby reducing the prevalence of metabolic syndrome.</p

    X-ray Absorption and Reflection in Active Galactic Nuclei

    Full text link
    X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei, and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies > 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.Comment: Accepted for publication in the Astronomy and Astrophysics Review. 58 pages, 9 figures. V2 has fixed an error in footnote

    Early signaling, referral, and treatment of adolescent chronic pain: a study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic pain is prevalent among young people and negatively influences their quality of life. Furthermore, chronic pain in adolescence may persist into adulthood. Therefore, it is important early on to promote the self-management skills of adolescents with chronic pain by improving signaling, referral, and treatment of these youngsters. In this study protocol we describe the designs of two complementary studies: a signaling study and an intervention study.</p> <p>Methods and design</p> <p>The signaling study evaluates the Pain Barometer, a self-assessed signaling instrument for chronic pain in adolescents. To evaluate the feasibility of the Pain Barometer, the experiences of youth-health care nurses will be evaluated in semi-structured interviews. Also, we will explore the frequencies of referral per health-care provider. The intervention study evaluates Move It Now, a guided self-help intervention via the Internet for teenagers with chronic pain. This intervention uses cognitive behavioural techniques, including relaxation exercises and positive thinking. The objective of the intervention is to improve the ability of adolescents to cope with pain. The efficacy of Move It Now will be examined in a randomized controlled trial, in which 60 adolescents will be randomly assigned to an experimental condition or a waiting list control condition.</p> <p>Discussion</p> <p>If the Pain Barometer is proven to be feasible and Move It Now appears to be efficacious, a health care pathway can be created to provide the best tailored treatment promptly to adolescents with chronic pain. Move It Now can be easily implemented throughout the Netherlands, as the intervention is Internet based.</p> <p>Trial registration</p> <p>Dutch Trial Register NTR1926</p

    Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions

    Get PDF
    Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell--based biorefineries.This study was supported by the Portuguese Foundation for Science and Technology (FCT) by the strategic funding of UID/BIO/04469/2013 unit, MIT Portugal Program (Ph.D. grant PD/BD/128247/ 2016 to Joana T. Cunha), Ph.D. grant SFRH/BD/130739/2017 to Carlos E. Costa, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004), YeasTempTation (ERA-IB-2-6/0001/2014), and MultiBiorefinery project (POCI-01-0145-FEDER-016403). Funding by the Institute for Bioengineering and Biosciences (IBB) from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) was also receiveinfo:eu-repo/semantics/publishedVersio

    Psip1/Ledgf p52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing

    Get PDF
    Increasing evidence suggests that chromatin modifications have important roles in modulating constitutive or alternative splicing. Here we demonstrate that the PWWP domain of the chromatin-associated protein Psip1/Ledgf can specifically recognize tri-methylated H3K36 and that, like this histone modification, the Psip1 short (p52) isoform is enriched at active genes. We show that the p52, but not the long (p75), isoform of Psip1 co-localizes and interacts with Srsf1 and other proteins involved in mRNA processing. The level of H3K36me3 associated Srsf1 is reduced in Psip1 mutant cells and alternative splicing of specific genes is affected. Moreover, we show altered Srsf1 distribution around the alternatively spliced exons of these genes in Psip1 null cells. We propose that Psip1/p52, through its binding to both chromatin and splicing factors, might act to modulate splicing

    Dynamic elementary mode modelling of non-steady state flux data

    Get PDF
    [EN] A novel framework is proposed to analyse metabolic fluxes in non-steady state conditions, based on the new concept of dynamic elementary mode (dynEM): an elementary mode activated partially depending on the time point of the experiment.This research work was partially supported by the Spanish Ministry of Economy and Competitiveness under the project DPI2014-55276-C5-1R.Folch-Fortuny, A.; Teusink, B.; Hoefsloot, HC.; Smilde, AK.; Ferrer, A. (2018). Dynamic elementary mode modelling of non-steady state flux data. BMC Systems Biology. 12:1-15. https://doi.org/10.1186/s12918-018-0589-3S11512Bro R, Smilde AK. Principal component analysis. Anal Methods. 2014; 6(9):2812–31.González-Martínez JM, Folch-Fortuny A, Llaneras F, Tortajada M, Picó J, Ferrer A. Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media. Chemometr Intell Lab Syst. 2014; 134:89–99.Barrett CL, Herrgard MJ, Palsson B. Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation. BMC Syst Biol. 2009; 3(30):1–8.Jaumot J, Gargallo R, De Juan A, Tauler R. A graphical user-friendly interface for MCR-ALS: A new tool for multivariate curve resolution in MATLAB. Chemometr Intell Lab Syst. 2005; 76(1):101–10.Folch-Fortuny A, Tortajada M, Prats-Montalbán JM, Llaneras F, Picó J, Ferrer A. MCR-ALS on metabolic networks: Obtaining more meaningful pathways. Chemometr Intell Lab Syst. 2015; 142:293–303.Folch-Fortuny A, Marques R, Isidro IA, Oliveira R, Ferrer A. Principal elementary mode analysis (PEMA). Mol BioSyst. 2016; 12(3):737–46.Hood L. Systems biology: Integrating technology, biology, and computation. Mech Ageing Dev. 2003; 124(1):9–16.Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem / FEBS. 2000; 267(17):5313–29.Mahadevan R, Edwards JS, Doyle FJ. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J. 2002; 83(3):1331–40.Willemsen AM, Hendrickx DM, Hoefsloot HCJ, Hendriks MMWB, Wahl SA, Teusink B, Smilde AK, van Kampen AHC. MetDFBA: incorporating time-resolved metabolomics measurements into dynamic flux balance analysis. Mol BioSyst. 2015; 11(1):137–45.Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003; 17(3):166–73.Bartel J, Krumsiek J, Theis FJ. Statistical methods for the analysis of high-throughput metabolomics data. Comput Struct Biotechnol J. 2013; 4:201301009.Hendrickx DM, Hoefsloot HCJ, Hendriks MMWB, Canelas AB, Smilde AK. Global test for metabolic pathway differences between conditions. Anal Chim Acta. 2012; 719:8–15.Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006; 34(Database issue):354–7.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000; 28(1):27–30.Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 2010; 38(Database issue):355–60.Andersson CA, Bro R. The N-way Toolbox for MATLAB. Chemometr Intell Lab Syst. 2000; 52(1):1–4.Terzer M, Stelling J. Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics. 2008; 24(19):2229–35.Heerden JHv, Wortel MT, Bruggeman FJ, Heijnen JJ, Bollen YJM, Planqué R, Hulshof J, O’Toole TG, Wahl SA, Teusink B. Lost in Transition: Start-Up of Glycolysis Yields Subpopulations of Nongrowing Cells. Science. 2014; 343(6174):1245114.Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U. COPASI–a COmplex PAthway SImulator. Bioinformatics. 2006; 22(24):3067–74.Petzold L. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J Sci Stat Comput. 1983; 4:136–48.Canelas AB, van Gulik WM, Heijnen JJ. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng. 2008; 100(4):734–43.Nikerel IE, Canelas AB, Jol SJ, Verheijen PJT, Heijnen JJ. Construction of kinetic models for metabolic reaction networks: Lessons learned in analysing short-term stimulus response data. Math Comput Model Dyn Syst. 2011; 17(3):243–60.Llaneras F, Picó J. Stoichiometric modelling of cell metabolism. J Biosci Bioeng. 2008; 105(1):1–11.Bro R. Multiway calibration. Multilinear PLS. J Chemom. 1998; 10(1):47–61.Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, Velzen EJJv, Duijnhoven JPMv, Dorsten FAv. Assessment of PLSDA cross validation. Metabolomics. 2008; 4(1):81–9.Szymańska E, Saccenti E, Smilde AK, Westerhuis JA. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies. Metabolomics. 2012; 8(Suppl 1):3–16.Rodrigues F, Ludovico P, Leão C. Sugar Metabolism in Yeasts: an Overview of Aerobic and Anaerobic Glucose Catabolism. In: Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Berlin: Springer: 2006. p. 101–21.Larsson K, Ansell R, Eriksson P, Adler L. A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol. 1993; 10(5):1101–11.Eriksson P, André L, Ansell R, Blomberg A, Adler L. Cloning and characterization of GPD2, a second gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) in Saccharomyces cerevisiae, and its comparison with GPD1. Mol Microbiol. 1995; 17(1):95–107.Norbeck J, Pâhlman AK, Akhtar N, Blomberg A, Adler L. Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1996; 271(23):13875–81

    One thousand plant transcriptomes and the phylogenomics of green plants

    Get PDF
    Abstract: Green plants (Viridiplantae) include around 450,000–500,000 species1, 2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life
    corecore