47 research outputs found

    Resistance to natural and synthetic gene drive systems

    Get PDF
    Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general

    Resistance to natural and synthetic gene drive systems

    Get PDF
    Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general

    Data from: The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive

    No full text
    Background: Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD) an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. Results: I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. Conclusions: The genomic organization of the Rsp repeat in the D. melanogaster genome is complex--it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years)

    Data from: Genomic changes following the reversal of a Y chromosome to an autosome in Drosophila pseudoobscura

    No full text
    Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome-Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10–15 Mya. We used single molecule real-time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y-to-dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ∌78 Kb and is not repeat-dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y-to-dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y-to-dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y-to-dot translocation

    dpse_falcon assembly

    No full text
    We downloaded raw PacBio reads from ftp://ftp.hgsc.bcm.edu/Dpseudoobscura/Towards_finishing_the_D.pseudoobscura_genome/PacBio_Data/FastQ_files/ (these reads was generously granted by Drs. Stephen Schaeffer and Stephen Richards). We used the Falcon assembler v0.3.0 (https://github.com/PacificBiosciences/FALCON-integrate) to filter, correct and assemble reads. Then we polished the assembly using Quiver (SMRT Analysis v2.3.0

    dpse expression and annotation

    No full text
    We mapped RNA-seq reads to our assembly using Tophat v2.0.13 and estimated expression level with cufflinks v2.2.2. We then searched for homologous genes using the predicted transcripts as BLAST queries to all D. melanogaster translations and transposon sequences (r6.07) with NCBIblast

    dpse_falcon gtf

    No full text
    We identified exon-introns junctions by mapping annotated transcripts (r3.03; Flybase) and transcripts of Y-linked genes from NCBI (gi|295126506|gb|GU937420.1|, gi|255764727|gb|EU595397.2|, gi|295126512|gb|GU937423.1|) to our assembly using exonerate 2.4.0. To complement these data, we mapped RNA-seq reads to our assembly using Tophat v2.0.13. We annotated transcripts, eliminated small redundant isoforms with cufflinks v2.2.2

    Data from: Origin, evolution, and population genetics of the selfish Segregation distorter gene duplication in European and African populations of Drosophila melanogaster

    No full text
    Meiotic drive elements are a special class of evolutionarily “selfish genes” that subvert Mendelian segregation to gain preferential transmission at the expense of homologous loci. Many drive elements appear to be maintained in populations as stable polymorphisms, their equilibrium frequencies determined by the balance between drive (increasing frequency) and selection (decreasing frequency). Here we show that a classic, seemingly balanced, drive system is instead characterized by frequent evolutionary turnover giving rise to dynamic, rather than stable, equilibrium frequencies. The autosomal Segregation Distorter (SD) system of the fruitfly Drosophila melanogaster is a selfish coadapted meiotic drive gene complex in which the major driver corresponds to a partial duplication of the gene Ran-GTPase activating protein (RanGAP). SD chromosomes segregate at similar, low frequencies of 1–5% in natural populations worldwide, consistent with a balanced polymorphism. Surprisingly, our population genetic analyses reveal evidence for parallel, independent selective sweeps of different SD chromosomes in populations on different continents. These findings suggest that, rather than persisting at a single stable equilibrium, SD chromosomes turn over frequently within populations
    corecore