45 research outputs found

    Global gene expression in neuroendocrine tumors from patients with the MEN1 syndrome

    Get PDF
    BACKGROUND: Multiple Endocrine Neoplasia type 1 (MEN1, OMIM 131100) is an autosomal dominant disorder characterized by endocrine tumors of the parathyroids, pancreatic islets and pituitary. The disease is caused by the functional loss of the tumor suppressor protein menin, coded by the MEN1 gene. The protein sequence has no significant homology to known consensus motifs. In vitro studies have shown menin binding to JunD, Pem, Smad3, NF-kappaB, nm23H1, and RPA2 proteins. However, none of these binding studies have led to a convincing theory of how loss-of-menin leads to neoplasia. RESULTS: Global gene expression studies on eight neuroendocrine tumors from MEN1 patients and 4 normal islet controls was performed utilizing Affymetrix U95Av2 chips. Overall hierarchical clustering placed all tumors in one group separate from the group of normal islets. Within the group of tumors, those of the same type were mostly clustered together. The clustering analysis also revealed 19 apoptosis-related genes that were under-expressed in the group of tumors. There were 193 genes that were increased/decreased by at least 2-fold in the tumors relative to the normal islets and that had a t-test significance value of p < = 0.005. Forty-five of these genes were increased and 148 were decreased in the tumors relative to the controls. One hundred and four of the genes could be classified as being involved in cell growth, cell death, or signal transduction. The results from 11 genes were selected for validation by quantitative RT-PCR. The average correlation coefficient was 0.655 (range 0.235–0.964). CONCLUSION: This is the first analysis of global gene expression in MEN1-associated neuroendocrine tumors. Many genes were identified which were differentially expressed in neuroendocrine tumors arising in patients with the MEN1 syndrome, as compared with normal human islet cells. The expression of a group of apoptosis-related genes was significantly suppressed, suggesting that these genes may play crucial roles in tumorigenesis in this syndrome. We identified a number of genes which are attractive candidates for further investigation into the mechanisms by which menin loss causes tumors in pancreatic islets. Of particular interest are: FGF9 which may stimulate the growth of prostate cancer, brain cancer and endometrium; and IER3 (IEX-1), PHLDA2 (TSS3), IAPP (amylin), and SST, all of which may play roles in apoptosis

    Framingham Heart Study genome-wide association: results for pulmonary function measures

    Get PDF
    © 2007 Wilk et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution Licens

    Evidence for a gene influencing heart rate on chromosome 5p13-14 in a meta-analysis of genome-wide scans from the NHLBI Family Blood Pressure Program

    Get PDF
    BACKGROUND: Elevated resting heart rate has been shown in multiple studies to be a strong predictor of cardiovascular disease. Previous family studies have shown a significant heritable component to heart rate with several groups conducting genomic linkage scans to identify quantitative trait loci. METHODS: We performed a genome-wide linkage scan to identify quantitative trait loci influencing resting heart rate among 3,282 Caucasians and 3,989 African-Americans in three independent networks comprising the Family Blood Pressure Program (FBPP) using 368 microsatellite markers. Mean heart rate measurements were used in a regression model including covariates for age, body mass index, pack-years, currently drinking alcohol (yes/no), hypertension status and medication usage to create a standardized residual for each gender/ethnic group within each study network. This residual was used in a nonparametric variance component model to generate a LOD score and a corresponding P value for each ethnic group within each study network. P values from each ethnic group and study network were merged using an adjusted Fisher's combining P values method and the resulting P values were converted to LOD scores. The entire analysis was redone after individuals currently taking beta-blocker medication were removed. RESULTS: We identified significant evidence of linkage (LOD = 4.62) to chromosome 10 near 142.78 cM in the Caucasian group of HyperGEN. Between race and network groups we identified a LOD score of 1.86 on chromosome 5 (between 39.99 and 45.34 cM) in African-Americans in the GENOA network and the same region produced a LOD score of 1.12 among Caucasians within a different network (HyperGEN). Combining all network and race groups we identified a LOD score of 1.92 (P = 0.0013) on chromosome 5p13-14. We assessed heterogeneity for this locus between networks and ethnic groups and found significant evidence for low heterogeneity (P ≤ 0.05). CONCLUSION: We found replication (LOD > 1) between ethnic groups and between study networks with low heterogeneity on chromosome 5p13-14 suggesting that a gene in this region influences resting heart rate

    Evaluating the contribution of rare variants to type 2 diabetes and related traits using pedigrees

    Get PDF
    Significance Contributions of rare variants to common and complex traits such as type 2 diabetes (T2D) are difficult to measure. This paper describes our results from deep whole-genome analysis of large Mexican-American pedigrees to understand the role of rare-sequence variations in T2D and related traits through enriched allele counts in pedigrees. Our study design was well-powered to detect association of rare variants if rare variants with large effects collectively accounted for large portions of risk variability, but our results did not identify such variants in this sample. We further quantified the contributions of common and rare variants in gene expression profiles and concluded that rare expression quantitative trait loci explain a substantive, but minor, portion of expression heritability.</jats:p

    The Gly2019Ser mutation in LRRK2 is not fully penetrant in familial Parkinson's disease: the GenePD study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We report age-dependent penetrance estimates for leucine-rich repeat kinase 2 (<it>LRRK2</it>)-related Parkinson's disease (PD) in a large sample of familial PD. The most frequently seen <it>LRRK2 </it>mutation, Gly2019Ser (G2019S), is associated with approximately 5 to 6% of familial PD cases and 1 to 2% of idiopathic cases, making it the most common known genetic cause of PD. Studies of the penetrance of <it>LRRK2 </it>mutations have produced a wide range of estimates, possibly due to differences in study design and recruitment, including in particular differences between samples of familial PD versus sporadic PD.</p> <p>Methods</p> <p>A sample, including 903 affected and 58 unaffected members from 509 families ascertained for having two or more PD-affected members, 126 randomly ascertained PD patients and 197 controls, was screened for five different <it>LRRK2 </it>mutations. Penetrance was estimated in families of <it>LRRK2 </it>carriers with consideration of the inherent bias towards increased penetrance in a familial sample.</p> <p>Results</p> <p>Thirty-one out of 509 families with multiple cases of PD (6.1%) were found to have 58 <it>LRRK2 </it>mutation carriers (6.4%). Twenty-nine of the 31 families had G2019S mutations while two had R1441C mutations. No mutations were identified among controls or unaffected relatives of PD cases. Nine PD-affected relatives of G2019S carriers did not carry the <it>LRRK2 </it>mutation themselves. At the maximum observed age range of 90 to 94 years, the unbiased estimated penetrance was 67% for G2019S families, compared with a baseline PD risk of 17% seen in the non-<it>LRRK2</it>-related PD families.</p> <p>Conclusion</p> <p>Lifetime penetrance of <it>LRRK2 </it>estimated in the unascertained relatives of multiplex PD families is greater than that reported in studies of sporadically ascertained <it>LRRK2 </it>cases, suggesting that inherited susceptibility factors may modify the penetrance of <it>LRRK2 </it>mutations. In addition, the presence of nine PD phenocopies in the <it>LRRK2 </it>families suggests that these susceptibility factors may also increase the risk of non-<it>LRRK2</it>-related PD. No differences in penetrance were found between men and women, suggesting that the factors that influence penetrance for <it>LRRK2 </it>carriers are independent of the factors which increase PD prevalence in men.</p

    Analysis of protein-coding genetic variation in 60,706 humans

    Get PDF
    Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. We describe the aggregation and analysis of high-quality exome (protein-coding region) sequence data for 60,706 individuals of diverse ethnicities generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of truncating variants with 72% having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human “knockout” variants in protein-coding genes

    The Framingham Heart Study 100K SNP genome-wide association study resource: overview of 17 phenotype working group reports

    Get PDF
    Background: The Framingham Heart Study (FHS), founded in 1948 to examine the epidemiology of cardiovascular disease, is among the most comprehensively characterized multi-generational studies in the world. Many collected phenotypes have substantial genetic contributors; yet most genetic determinants remain to be identified. Using single nucleotide polymorphisms (SNPs) from a 100K genome-wide scan, we examine the associations of common polymorphisms with phenotypic variation in this community-based cohort and provide a full-disclosure, web-based resource of results for future replication studies. Methods: Adult participants (n = 1345) of the largest 310 pedigrees in the FHS, many biologically related, were genotyped with the 100K Affymetrix GeneChip. These genotypes were used to assess their contribution to 987 phenotypes collected in FHS over 56 years of follow up, including: cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity traits; and traits in pulmonary, sleep, neurology, renal, and bone domains. We conducted genome-wide variance components linkage and population-based and family-based association tests. Results: The participants were white of European descent and from the FHS Original and Offspring Cohorts (examination 1 Offspring mean age 32 ± 9 years, 54% women). This overview summarizes the methods, selected findings and limitations of the results presented in the accompanying series of 17 manuscripts. The presented association results are based on 70,897 autosomal SNPs meeting the following criteria: minor allele frequency ≥ 10%, genotype call rate ≥ 80%, Hardy-Weinberg equilibrium p-value ≥ 0.001, and satisfying Mendelian consistency. Linkage analyses are based on 11,200 SNPs and short-tandem repeats. Results of phenotype-genotype linkages and associations for all autosomal SNPs are posted on the NCBI dbGaP website at http:// www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. Conclusion: We have created a full-disclosure resource of results, posted on the dbGaP website, from a genome-wide association study in the FHS. Because we used three analytical approaches to examine the association and linkage of 987 phenotypes with thousands of SNPs, our results must be considered hypothesis-generating and need to be replicated. Results from the FHS 100K project with NCBI web posting provides a resource for investigators to identify high priority findings for replication.Molecular and Cellular Biolog

    Shared genetic risk between eating disorder- and substance-use-related phenotypes:Evidence from genome-wide association studies

    Get PDF
    First published: 16 February 202
    corecore