778 research outputs found

    The influence of image content on oculomotor plasticity

    Full text link
    When we observe a scene, we shift our gaze to different points of interest via saccadic eye movements. Saccades provide high resolution views of objects and are essential for vision. The successful view of an interesting target might constitute a rewarding experience to the oculomotor system. We measured the influence of image content on learning efficiency in saccade control. We compared meaningful pictures to luminance and spatial frequency–matched random noise images in a saccadic adaptation paradigm. In this paradigm a shift of the target during the saccades results in a gradual increase of saccade amplitude. Stimuli were masked at different times after saccade onset. For immediate masking of the stimuli, as well as for their permanent visibility, saccadic adaptation was similar for both types of targets. However, when stimuli were masked 200 ms after saccade onset, adaptation of saccades directed toward the meaningful target stimuli was significantly greater than that of saccades directed toward noise targets. Thus, the percept of a meaningful image at the saccade landing position facilitates learning of the appropriate parameters for saccadic motor control when time constraints exist. We conclude that oculomotor learning, which is traditionally considered a low-level and highly automatized process, is modulated by the visual content of the image

    Predicting protein functions with message passing algorithms

    Full text link
    Motivation: In the last few years a growing interest in biology has been shifting towards the problem of optimal information extraction from the huge amount of data generated via large scale and high-throughput techniques. One of the most relevant issues has recently become that of correctly and reliably predicting the functions of observed but still functionally undetermined proteins starting from information coming from the network of co-observed proteins of known functions. Method: The method proposed in this article is based on a message passing algorithm known as Belief Propagation, which takes as input the network of proteins physical interactions and a catalog of known proteins functions, and returns the probabilities for each unclassified protein of having one chosen function. The implementation of the algorithm allows for fast on-line analysis, and can be easily generalized to more complex graph topologies taking into account hyper-graphs, {\em i.e.} complexes of more than two interacting proteins.Comment: 12 pages, 9 eps figures, 1 additional html tabl

    Trans-saccadic adaptation of perceived size independent of saccadic adaptation

    Get PDF
    Systematic shortening or lengthening of target objects during saccades modifies saccade amplitudes and perceived size of the objects. These two events are concomitant when size change during the saccade occurs asymmetrically, thereby shifting the center of mass of the object. In the present study, we asked whether or not the two are necessarily linked. We tested human participants in symmetrical systematic shortening and lengthening of a vertical bar during a horizontal saccade, aiming to not modify the saccade amplitude. Before and after a phase of trans-saccadic changes of the target bar, participants manually indicated the sizes of various vertically oriented bars by open-loop grip aperture. We evaluated the effect of trans-saccadic changes of bar length on manual perceptual reports and whether this change depended on saccade amplitude. As expected, we did not induce any change in horizontal or vertical components of saccade amplitude, but we found a significant difference in perceived size after the lengthening experiment compared to after the shortening experiment. Moreover, after the lengthening experiment, perceived size differed significantly from pre-lengthening baseline. These findings suggest that a change of size perception can be induced trans-saccadically, and its mechanism does not depend on saccadic amplitude change

    Covert Shift of Attention Modulates the Ongoing Neural Activity in a Reaching Area of the Macaque Dorsomedial Visual Stream

    Get PDF
    Background: Attention is used to enhance neural processing of selected parts of a visual scene. It increases neural responses to stimuli near target locations and is usually coupled to eye movements. Covert attention shifts, however, decouple the attentional focus from gaze, allowing to direct the attention to a peripheral location without moving the eyes. We tested whether covert attention shifts modulate ongoing neuronal activity in cortical area V6A, an area that provides a bridge between visual signals and arm-motor control. Methodology/Principal Findings: We performed single cell recordings from 3 Macaca Fascicularis trained to fixate straight-head, while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention. The attentional modulation occurs without gaze shifts and cannot be explained by visual stimulations. Visual, motor, and attentional responses can occur in combination in single neurons. Conclusions/Significance: This modulation in an area primarily involved in visuo-motor transformation for reaching may form a neural basis for coupling attention to the preparation of reaching movements. Our results show that cortical processes of attention are related not only to eye-movements, as many studies have shown, but also to arm movements, a finding that has been suggested by some previous behavioral findings. Therefore, the widely-held view that spatial attention is tightly intertwined with - and perhaps directly derived from - motor preparatory processes should be extended to a broader spectrum of motor processes than just eye movements

    A pilot study on the nanoscale properties of bone tissue near lacunae in fracturing women

    Get PDF
    The goal of this study is to investigate the causes of osteoporosis-related skeletal fragility in postmenopausal women. We hypothesize that bone fragility in these individuals is largely due to mineral, and/or intrinsic material properties in the osteocyte lacunar/peri-lacunar regions of bone tissue. Innovative measurements with nanoscale resolution, including scanning electron microscope (SEM), an atomic force microscope that is integrated with infrared spectroscopy (AFM-IR), and nanoindentation, were used to characterize osteocyte lacunar and peri-lacunar properties in bone biopsies from fracturing (Cases) and matched (Age, BMD), non-fracturing (Controls) postmenopausal healthy women. In the peri-lacunar space, the nanoindentation results show that the modulus and hardness of the Controls are lower than the Cases. The AFM-IR results conclusively show that the mineral matrix, maturity (peak) (except in outer/far regions in Controls) were greater in Controls than in Cases. Furthermore, these results indicate that while mineral-to-matrix area ratio tend to be greater, the mineral maturity and crystallinity peak ratio “near” lacunae is greater than at regions “far” or more distance from lacunae in the Controls only. Due to the heterogeneity of bone structure, additional measurements are needed to provide more convincing evidence of altered lacunar characteristics and changes in the peri-lacunar bone as mechanisms related to postmenopausal women and fragility. Such findings would motivate new osteocyte-targeted treatments to reduce fragility fracture risks in these groups

    Homogeneity and Heterogeneity as Situational Properties: Producing – and Moving Beyond? – Race in Post-Genomic Science

    Get PDF
    In this article, we explore current thinking and practices around the logics of difference in gene–environment interaction research in the post-genomic era. We find that scientists conducting gene–environment interaction research continue to invoke well-worn notions of racial difference and diversity, but use them strategically to try to examine other kinds of etiologically significant differences among populations. Scientists do this by seeing populations not as inherently homogeneous or heterogeneous, but rather by actively working to produce homogeneity along some dimensions and heterogeneity along others in their study populations. Thus we argue that homogeneity and heterogeneity are situational properties – properties that scientists seek to achieve in their study populations, the available data, and other aspects of the research situation they are confronting, and then leverage to advance post-genomic science. Pointing to the situatedness of homogeneity and heterogeneity in gene–environment interaction research underscores the work that these properties do and the contingencies that shape decisions about research procedures. Through a focus on the situational production of homogeneity and heterogeneity more broadly, we find that gene–environment interaction research attempts to shift the logic of difference from solely racial terms as explanatory ends unto themselves, to racial and other dimensions of difference that may be important clues to the causes of complex diseases

    Illusory perceptions of space and time preserve cross-saccadic perceptual continuity

    Get PDF
    When voluntary saccadic eye movements are made to a silently ticking clock, observers sometimes think that the second hand takes longer than normal to move to its next position. For a short period, the clock appears to have stopped (chronostasis). Here we show that the illusion occurs because the brain extends the percept of the saccadic target backwards in time to just before the onset of the saccade. This occurs every time we move the eyes but it is only perceived when an external time reference alerts us to the phenomenon. The illusion does not seem to depend on the shift of spatial attention that accompanies the saccade. However, if the target is moved unpredictably during the saccade, breaking perception of the target's spatial continuity, then the illusion disappears. We suggest that temporal extension of the target's percept is one of the mechanisms that 'fill in' the perceptual 'gap' during saccadic suppression. The effect is critically linked to perceptual mechanisms that identify a target's spatial stability
    • …
    corecore