192 research outputs found

    Extension of the Frozen Sonic Flow Method to mixtures of polyatomic gases

    Get PDF
    A contemporary issue of crucial importance for further developments in the field of thermal protection systems and related arc-jet-based testing activities calls for improvements in existing abilities to measure the centerline total enthalpy. Starting from the original assumptions of Vincenti and Kruger (1965) and through the elaboration of a mathematical framework relying on a specific modelling hierarchy of balance equations for the moles of different species involved, we show that the extension of the Frozen Sonic Flow Method (FSFM) to the case of polyatomic molecules can be made well posed. Dedicated experiments have been conducted using a re-entry simulation facility and varying the mass-averaged enthalpy in the range between 5 and 30 [MJ/kg]. In particular, three different gas mixtures have been considered (using Nitrogen as hot feeding gas and adding cold Oxygen, Carbon Dioxide and Methane, respectively). The enthalpy ratios calculated by the FSFM, found to depend on the gas mixture, have been compared with the values determined using two alternate techniques, namely, 1) the Heating Rate Method and 2) the Calorimetric Probe Method. Given the extremely complex experimental conditions considered (high-enthalpy, low density, supersonic reactive flows), the agreement between the theoretical and experimental results can be considered very satisfactory

    Parallel solution of three-dimensional Marangoni flow in liquid bridges

    Get PDF

    A practical engineering approach to the design and manufacturing of a mini kW blade wind turbine : definition, optimisation and CFD analysis

    Get PDF
    A practical engineering approach to the design of a 60 kW wind generator with improved performances is presented. The proposed approach relies on the use of a specific, “ad hoc” developed software, OPTIWR (Optimization Software), expressly conceived to define an “optimum” rotor configuration in the framework of the blade element-momentum theory. Starting from an initial input geometric configuration (corresponding to an already existing 50 kW turbine) and for given values of the wind velocity Vwind and of the advance ratio X = Vwind/ΩR (where Ω is the blade rotational speed and R is the propeller radius), this software is used to determine iteratively the optimized distributions of chords and twists which can guarantee a constant value of the socalled axial induction factor a = 1/3 along the blade. The output configuration is then converted into a CAD model to be used, in turn, as input data for a CFD commercial software. With this tool the relative rotational motion between the fluid and the wind turbine are simulated resorting to a MRF (Moving Reference Frame) technique (for which continuity and momentum equations are solved in a rotating reference frame). The outcomes of the numerical simulations are then used to verify the improved performances of the optimized configuration and to which extent the CFD data agree with “expected” behaviours (i.e. performances predicted on the basis of the simplified model). Finally, some details about the construction technique used to turn the optimized configuration into an effective working prototype are provided, in conjunction with a critical discussion of suitable production methods for composite components

    High velocity infrared thermography and numerical trajectories of solid particles in compressible gas flow

    Get PDF
    The use of High Velocity Infrared Thermography as a valuable alternative to other existing techniques for the visualization and tracking of solid particles transported by a gas jet has been assessed by considering different situations in terms of problem characteristic numbers (jet Reynolds and Mach numbers and Particle Stokes and gravitational Froude numbers). Particles paths have also been calculated by means of a hybrid Eulerian-Lagrangian technique under the intent to cross-validate the two (experimental and numerical) approaches. The results indicate that such a strategy is robust and sufficiently flexible to be used in relatively wide regions of the space of parameters. Experiments have clearly demonstrated that thermography can properly capture particle dynamics with a level of detail comparable to that provided by simulations. Computations have proved to be valuable on their own by allowing the explorations of regions of the parameters space otherwise out of reach. Different tests have been conducted considering both isolated particles and "swarms". We show that the observed dynamics are induced by the delicate interplay of different effects, including inertial, gravitational and eventually "lift" contributions produced by a non-perfect horizontal orientation of the jet or other uncertainties (such as those due to a non mono-sized set of particles). (C) 2018 Elsevier B.V. All rights reserved

    On the highly unsteady dynamics of multiple thermal buoyant jets in cross flows

    Get PDF
    Thermal plumes of small scale generated by spatially separated heat sources can form, like atoms in a chemical compound, complex structures of different kind and with distinct behaviors. The situation becomes even more complex if plumes can interact with imposed vertical shear (a horizontal wind). In this analysis a ‘minimal framework’ based on the application of a filtering process to the governing balance equations for mass, momentum and energy (falling under the general heading of ‘Large Eddy Simulation’ approach), is used together with Direct Numerical Simulation to inquiry about the relative importance of buoyancy and vertical shear effects in determining the patterning scenario when highly unsteady dynamics are established (turbulent flow). Emerging patterns range from the flow dominated by a static rising jet produced by the aggregation of plumes, which are pushed by horizontal leftwards and rightwards winds towards the center of the physical domain, to convective systems with disconnected thermal pillars of smaller scale, which travel in the same direction of the prevailing wind. The classical sheltering effect, which for flows that are steady ‘in mean’ simply consists of an increased deflection of the leading buoyant jet with respect to the trailing ones, is taken over by a variety of new phenomena, including (but not limited to) fast plume removal-rebirth mechanisms (with local increase in the velocity frequency and shrinkage in the related amplitude), ‘bubble’ formation-rupture and local departure of the frequency spectrum from the Kolmogorov similarity law

    Investigation of thermocapillary migration of nano-droplets using molecular dynamics

    Get PDF
    Molecular dynamics is used to investigate the thermocapillary motion of a water nanodroplet suspended in benzene subjected to a constant temperature gradient. This framework lets us identify the average behavior of the fluid particles by revealing their mean evolution. We connect such statistics to the behavior of the temporally evolving nanodroplet, thereby providing a microphysical foundation to existing macroscopic models that rely on the assumption of continuum. It is shown that, despite the significant Brownian effects, the droplet exhibits the macrophysical expected behavior, i.e., it migrates toward the direction of the imposed temperature gradient. Thermophoretic effects are negligible and the functional relationships involved in such a process well resemble those of available analytical results. Additionally, we provide molecular dynamics calculations of the viscosity, thermal conductivity, and interfacial tension of benzene [using the Optimized Potentials for Liquid Simulations—All Atom (OPLSAA) molecular model] and water using the Transferable Intermolecular Potential with 4 Points (TIP4P) model at different temperatures and pressures. These findings will serve as a good reference for future simulations of similar molecular models

    Microstructural modification of Sn–Bi and Sn–Bi–Al immiscible alloys by shearing

    Get PDF
    Sn–20 wt-%Bi and immiscible Sn–20 wt-%Bi–1 wt-%Al alloys were used to understand the effect of high-intensity shearing on microstructural refinement. Novel ACME (Axial Centrifugal Metal Expeller) shearing device, based on axial compressor and rotor–stator mechanism to generate high shear rate and intense turbulence, was used to condition the melts prior to solidification. Microstructure in the Sn–Bi alloy deviated from dendritic grains with coarse eutectic pockets under conventional solidification to compact grains with well-dispersed eutectic under semisolid-state shearing. Decreasing the shearing temperature and increasing shearing time increased the globularity of grains. Following shearing, remnant liquid solidified into fine grain structure. In the immiscible Sn–Bi–Al alloy, shearing produced uniform dispersion of refined Al-rich particles in Sn-rich matrix as opposed to severe segregation under conventional solidification. The primary effect of shearing appears to originate from the thermo-solutal homogenisation of the melt and its effect on interface stability during solidification

    The JEREMI-project on thermocapillary convection in liquid bridges. Part B : Overview on impact of co-axial gas flow

    Get PDF
    Pure surface-tension-driven flow is a unique type of flow that can be controlled through external manipulation of thermal and/or mechanical boundary conditions at the free liquid surface where the entire driving force for the convection is generated. This unique feature has been exploited in recent studies for the active control of the flow instability. The use of forced coaxial gas streams has been proposed as a way to stabilize the Marangoni convection in liquid bridges in the planned space experiment JEREMI (Japanese and European Research Experiment on Marangoni Instabilities). It is aimed at understanding the mechanism of the instability and the role of the surface heat transfer and surface shear stresses. This overview presents corresponding preparatory experimental and numerical studies

    Conductive and convective heat transfer in fluid flows between differentially heated and rotating cylinders

    Get PDF
    The flow of fluid confined between a heated rotating cylinder and a cooled stationary cylinder is a canonical experiment for the study of heat transfer in engineering. The theoretical treatment of this system is greatly simplified if the cylinders are assumed to be of infinite length or periodic in the axial direction, in which cases heat transfer occurs only through conduction as in a solid. We here investigate numerically heat transfer and the onset of turbulence in such flows by using both periodic and no-slip boundary conditions in the axial direction. We obtain a simple linear criterion that determines whether the infinite-cylinder assumption can be employed. The curvature of the cylinders enters this linear relationship through the slope and additive constant. For a given length-to-gap aspect ratio there is a critical Rayleigh number beyond which the laminar flow in the finite system is convective and so the behaviour is entirely different from the periodic case. The criterion does not depend on the Prandtl number and appears quite robust with respect to the Reynolds number. In particular, it continues to work reasonably in the turbulent regime.Comment: 25 pages, 9 figure
    • 

    corecore