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The JEREMI-Project on Thermocapillary Convection in

Liquid Bridges.
Part B: Overview on Impact of Co-axial Gas Flow.

V. Shevtsova1, Y. Gaponenko1, H.C. Kuhlmann2, M. Lappa3, M. Lukasser2,

S. Matsumoto4, A. Mialdun1, J.M. Montanero5, K. Nishino6 and I. Ueno7

Abstract: Pure surface-tension-driven flow is a unique type of flow that can be

controlled through external manipulation of thermal and/or mechanical boundary

conditions at the free liquid surface where the entire driving force for the convection

is generated. This unique feature has been exploited in recent studies for the active

control of the flow instability. The use of forced coaxial gas streams has been

proposed as a way to stabilize the Marangoni convection in liquid bridges in the

planned space experiment JEREMI (Japanese and European Research Experiment

on Marangoni Instabilities). It is aimed at understanding the mechanism of the

instability and the role of the surface heat transfer and surface shear stresses. This

overview presents corresponding preparatory experimental and numerical studies.

1 Introduction

In the early days of spaceflight, it was believed that crystals of exceptional quality

could be grown from the melt in the microgravity environment due to the absence

of the undesired buoyant convection. However, first space-based experiments per-

formed independently by D. Schwabe and C.H. Chun at the same missions (TEXUS

3a 1980, partly successful) and (TEXUS 3b 1981, fully successful) showed that

thermocapillary forces provide a very strong natural-convection mechanism under

microgravity conditions (Chun and Schwabe, 1982; Schwabe, 2014). Over the time

the system of a thermocapillary liquid bridge became a standard setup for the study
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of thermocapillary flows (Schwabe, Preisser, and Scharmann, 1982; Kuhlmann,

1999; Lappa, 2010, 2012b).

Under typical ground conditions, the natural convection around the liquid bridge

is relatively weak, so its effect has been neglected in the past. This led to relative-

ly large uncertainties in the determination of, e.g., the critical Marangoni number

for the onset of a three-dimensional flow (Shevtsova, Mialdun, Ueno, Kawamura,

Nishino, and Lappa, 2011). Experimental evidence of the important role of heat

transport through liquid-gas interface in the stability of the thermocapillary flow in

LB has been reported since the 80s. Dressler and Sivakumaran (1988) performed

experiments on a silicone-oil liquid bridge using a vertical jet of air blown tan-

gentially over the free surface for producing a viscous shear force opposing the

Marangoni shear stresses on the free surface.

The Japanese–European Research Experiment on Marangoni Instability (JEREMI)

consortium is preparing a space experiment on the ISS with a launch date of 2016

in which the ambient atmosphere is much better defined. This may be achieved by

placing a liquid bridge into a coaxial gas flow in the annular space around the liquid

bridge. Of particular interest is the control of the threshold of an oscillatory flow

in the liquid zone by the temperature and velocity fields in the ambient gas. For

large-Prandtl-number liquids, particularly the 5cSt silicone oil which will be used,

the instability arises in form of hydrothermal waves (Smith and Davis, 1983; Wan-

schura, Shevtsova, Kuhlmann, and Rath, 1995; Leypoldt, Kuhlmann, and Rath,

2000). The JEREMI experiment is being developed by the International Topical

Team on Marangoni instabilities in systems with cylindrical symmetry and is sup-

ported on the European side in the framework of the ESA project IAO-2004-097

Thermocapillary oscillatory motion and interfacial heat exchange.

In addition to controlling the flow in thermocapillary liquid bridges, the JERE-

MI experiment provides the opportunity to study particle accumulation structures

(PAS). Research on PAS is supported by ESA in the framework of the project IAO-

2000-091 Dynamics of suspended particles in periodic vortex flows and has been

the subject of part A of this series of two overview papers (Kuhlmann, Lappa, Mel-

nikov, Mukin, Muldoon, Pushkin, Shevtsova, and Ueno, 2014).

The present part B covers the subject of thermocapillary-flow control by a coaxial

gas flow and the related preparations of the JEREMI experiment. The forced gas

flow along the interface provides two actions: shear stress and heat exchange. Even

in the case of a passive ambient gas (no forced flow), the experiments by Shevtso-

va, Mialdun, and Mojahed (2005), Mialdun and Shevtsova (2006) on free liquid

bridges and on liquid bridges protected by a coaxial cylindrical shield tube (with

temperature control of the shield tube), respectively, clearly showed a dependence

of the critical temperature difference and the critical frequency of oscillation on
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the surrounding conditions and the temperature of shielding. Kamotani’s group has

performed experiments (Kamotani, Wang, Hatta, Wang, and Yoda, 2003; Wang,

Kamotani, and Yoda, 2007) placing a liquid bridge in an oven at different temper-

atures demonstrating a strong dependence of the critical parameters on the temper-

ature of the ambient air. In some of their experiments (Kamotani, Wang, Hatta,

Wang, and Yoda, 2003) a thin plastic plate with a circular hole was placed horizon-

tally around a liquid column at a certain height without touching the free surface

in order to suppress convection in the ambient air. Depending on the axial loca-

tion of the plate the stability of the flow varied strongly due to the alteration of the

heat transfer near the free surface. Irikura, Arakawa, Ueno, and Kawamura (2005)

and Kousaka and Kawamura (2006) experimentally and numerically investigated

the way in which the volume of gas space around a liquid bridge affects the onset

of its instability. The volume of the ambient air region was varied by placing two

thin disks perpendicular to the liquid bridge. Similar configurations were studied

numerically and experimentally by Tiwari and Nishino (2007, 2010).

The study of the dynamic behavior of liquid bridges in response to a coaxial gas

flow began with the analysis of isothermal cases. Gaponenko, Ryzhkov, and Shevtso-

va (2010); Gaponenko, Glockner, Mialdun, and Shevtsova (2011); Gaponenko, Mi-

aldun, and Shevtsova (2012) and Herrada, López-Herrera, Vega, and Montanero

(2011) have recently examined isothermal gas–liquid flows in an annulus. The first

three studies were focused on the characteristics of the liquid flow driven by gas,

and the last one on the interface deformation. Along with geometrical scales the

key parameters responsible for flow dynamics are the inlet gas velocity and the vis-

cosity ratio between the two phases. The surface tension plays an important role

for the static and dynamic (flow-induced) deformations of the interface. Dynamic

free-surface deformations caused by a shear-driven flow were experimentally stud-

ied by Matsunaga, Mialdun, Nishino, and Shevtsova (2012) in a liquid bridge of

5cSt silicone oil. As a general trend, the flow-induced deformation grows with the

gas velocity. It also displays a strong dependence on the liquid volume ratio and

the orientation of the gas stream parallel or anti-parallel to the interface flow. All

experimental and numerical results in the above mentioned studies on the magni-

tude of the dynamic free-surface deformation for the volume ratio V = 1 are in an

excellent agreement and cover 1–10 µm. The study was limited to a gas velocity

up 2m/s (or Reg < 560).

Only a few studies have been concerned with both the flow in a non-isothermal

liquid bridge and in the surrounding gas. Experiments in a 2cSt-silicone-oil/air

system by Ueno, Kawazoe, and Enomoto (2010) showed that the stability of the

thermocapillary flow in a liquid bridge is strongly affected by the orientation of

the gas stream, even though the gas was at room temperature and the velocity was
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rather low, Reg ≤ 100. For the geometry considered the steady flow was stabilized

when the net gas flow was oriented parallel to thermocapillary-driven flow on the

interface, whereas the steady basic flow was destabilized when the net gas flow was

oriented in opposite direction to the thermocapillary-driven flow on the interface.

The thermocapillary flow in an infinitely long, non-deformable liquid bridge sur-

rounded by an annular channel of gas with an axial temperature gradient was in-

vestigated by Ryzhkov and Shevtsova (2012) using linear–stability analysis (LSA).

The authors reported that a net gas flow in the same direction as the thermocapillary

surface flow acts destabilizing on the axisymmetric basic flow. A net gas motion in

the opposite direction can be stabilizing or destabilizing depending on the gas-flow

rate. The different trends for the liquid flow stability with respect to the gas direc-

tion between the experiments on finite-length liquid bridges of Ueno, Kawazoe, and

Enomoto (2010) and the linear-stability analysis for an infinitely long liquid zone

can be attributed to the different axial temperature profiles in gas phase, which was

assumed to be linear in the LSA. As a consequence there is no heat exchange be-

tween the liquid and the gas in the basic axisymmetric flow state. It occurs only on

the level of perturbations. For that reason a cooling or heating of the liquid through

the interface by an ambient gas flow cannot be described in the framework of the

simple model employed.

Yura, Maruyama, and Nishino (2009) have experimentally studied the effect of a

co-axial gas flow on the flow stability in liquid bridges of different volume ratios.

The critical temperature difference as a function of the volume ratio consists of two

branches with a peaked maximum at a volume roughly corresponding to a straight

cylindrical interface. The author reported a shift of the peak to the smaller or larger

volume ratios depending on the gas-flow direction. The peak was shifted to the

side of smaller volumes V when the gas flow was opposite to the thermocapillary-

driven flow on the interface and to the side of larger volumes V when the gas flow

is co-directed with surface flow. The larger the gas velocity the larger is the shift of

the peak.

A comprehensive numerical analysis of the axisymmetric thermocapillary convec-

tion in a liquid bridge Pr=12 (n-decane) and Pr=68 (5 cSt silicone oil) in the ax-

isymmetric case was presented by Shevtsova, Gaponenko, and Nepomnyashchy

(2013) when the interface is subjected to an axial gas stream. In the case when

the gas stream comes from the cold side (anti-parallel to the surface flow), a new

oscillatory instability was found in form of an axially travelling wave propagating

from the hot to the cold end of the liquid bridge.
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2 Microgravity experiment

Microgravity experiments are planned to be conducted in the Fluid Physics Ex-

periment Facility (FPEF) installed in the JEM (KIBO) module on the ISS. The

thermocapillary flows in the liquid bridge have been examined in the ground-based

experiment only with small liquid bridges, a diameter of 5mm or less. A ground-

based experiment with a larger liquid bridge is not feasible because of the limita-

tions caused by buoyant flow, the gravity-induced deformation of the liquid bridge

and the difficulty in the formation of large liquid bridges. The effect of the buoyant

flow can be represented by the dynamic Bond number, Bd, and the effect of the

gravity on the deformation can be represented by the static Bond number, Bo,

Bd = (ρ l −ρg)gβd/γ, Bo = (ρ l −ρg)gd2/σ . (1)

where ρ is the density of liquid (l) and gas (g), g is the gravitational acceleration,

β is the temperature coefficient of volume expansion, d is the characteristic length,

σ is the surface tension and γ = −dσ/dT . As indicated by these Bond numbers,

the effect of gravity can be neglected either by limiting the size of the liquid bridge

to several millimeters or by performing experiments in space. The fact that the

objectives of this research can be fulfilled by changing the size of liquid bridge

in the diameter range from 10 to 20 mm requires long-term microgravity environ-

ments. The International Space Station provides such a long-duration microgravity

environment.

2.1 Relevance of the microgravity experiment

The relevance of microgravity experiment in the liquid bridge can be summarized

as follows:

• Elimination of buoyancy. The buoyancy force acts in the liquid bridge and in

the non-isothermal ambient atmosphere.

• Extension of the accessible aspect-ratio range. On the ground, the accessibly

range of length-to-radius ratio is limited by the hydrostatic instability of the liquid

bridge.

• Realization of wide range of the Marangoni number Ma. By larger liquid

bridges high Marangoni numbers can be realized even with relatively small tem-

perature differences.

• Prevention of hydrostatic interface deformations.

• Enabling the use of low-surface-tension liquids. Microgravity allows to use

low-surface-tension liquids which would yield mechanically unstable liquid bridges

under terrestrial gravity.

• Accessibility of a wide range of particle sizes. On the ground particles denser
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Figure 1: Sketch of the experimental cell

than liquid would rapidly sediment.

• Accessibility of a wider range of Prandtl numbers. On the ground the max-

imum temperature difference that can be imposed is limited by the melting point

and the evaporation rate (boiling point) of the liquid.

• Exploration of the limits of PAS formation. The possibility to create much

longer liquid bridges than on the ground allows for a study of particle accumula-

tion as a function of the aspect ratio also for long liquid bridges.

• Utilization of a very long duration of the microgravity environment on the

ISS.

2.2 Conceptual design (S. Matsumoto)

The sketch of the experimental cartridge, which will be inserted in the Fluid Physics

Experiment Facility (FPEF) is shown in Fig. 1. The cartridge comprises the follow-

ing parts:

(1) Liquid bridge formation

(2) Temperature control of the end walls bounding the liquid bridge

(3) Ambient gas velocity and temperature control

(4) Observation (video images and temperature measurement)

A pair of rods sustain the liquid bridge. One rod is heated by a resistance heater

and other rod cooled by a Peltier device to induce thermocapillary convection in

liquid bridge. The liquid-bridge formation part is covered with a cylindrical tube

(external shield) made of transparent 3 mm thick polycarbonate in order to supply

the controlled flow of gas around the liquid bridge. The gas-flow system generates

a forced flow and provides the measurement of the gas velocity. The temperature

of the gas is controlled at the heat exchanger just before entering the annular air
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gap around the liquid bridge. Three video cameras are used to observe the liquid-

bridge shape and the flow field. One takes a video from the top and the other

two cameras provide side views of the liquid bridge. Several temperature sensors

(thermocouples and thermistors) are equipped to measure the temperature of the

inside of the liquid bridge and in the ambient gas. The working fluid will be 5-cSt-

silicone oil. Gold-coated acrylic particles will be dispersed into the silicone oil to

visualize the flow motion.

3 Mathematical formulation

The mathematical model assumes incompressibility of liquid and gas, linear depen-

dence of surface tension and density on temperature, with all other thermophysical

properties of fluids being taken as constant. The physical problem investigated

is that of a cylindrical liquid bridge concentrically surrounded by an annular gas

channel under conditions of zero gravity. The problem will be formulated in the

cylindrical coordinate system (r,ϕ,z), although some teams use the Cartesian co-

ordinate system in calculations. The geometry of the system and notation are shown

in Fig. 2.

The outer cylinder is a solid tube of radius Rout . The inner cylinder consists of

two solid rods of radius R0 and a liquid bridge between them, which is kept in

its position by surface tension force. Gas of a constant flow rate Qin enters from

the right or left and flows through the annular duct of a size (Rout −R0). Moving

along the solid rod of the length Hc (Hh) the gas reaches the liquid zone and a

forced gas flow interplays with a liquid thermocapillary flow, which is present when

the temperature difference is imposed between the rods. After passing the liquid

zone of the length d, the gas continues to move through the annular duct over the

distance Hh (Hc) up to the tube outlet. The total length of the tube is L = Hc+Hh+
d. The system of two coaxial cylinders is shown in Fig. 2 in horizontal position

which corresponds to the microgravity case. For discussion of the experiments in

terrestrial conditions the same notations will be used, while the gravity vector is

directed parallel to the axes of cylinder.

When the solid rods, which should have an excellent thermal conductivity, are heat-

ed at Th and cooled at Tc, respectively, with a temperature difference ∆T = Th −Tc,

the temperature variation along the liquid–gas interface drives a significant flu-

id motion via the thermocapillary effect. At small temperature differences the

flow is axisymmetric. With the increase of the temperature difference the flow

becomes three-dimensional and the axisymmetry is broken (Wanschura, Shevtso-

va, Kuhlmann, and Rath, 1995). For a Prandtl number larger than about one, this

symmetry-breaking bifurcation leads to an oscillatory flow. Further increase of ∆T

leads to co-existence of multiple modes (Shevtsova, D., and Legros, 2003), or ape-
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Figure 2: Geometry of the problem

riodicity of the flow (Frank and Schwabe, 1997; Melnikov, Shevtsova, and Legros,

2004). The presence of a gas flow essentially modifies the critical parameters as

well as the type of a hydrothermal wave.

3.1 Governing equations

The liquid and gas are considered as Newtonian fluids with temperature-dependent

properties. The density ρ, surface tension σ are temperature dependent quantities

and to first order they can be expanded in Taylor series.

σ = σ0 − γ (T −T0)+O(T −T0)
2, (2)

ρ l = ρ l
0

[
1−β l (T −T0)

]
+O(T −T0)

2, (3)

ρg = ρ
g
0 [1−β g (T −T0)]+O(T −T0)

2, (4)

where T0 = (Th + Tc)/2 is the arithmetic mean temperature of the rods, γ is the

surface-tension coefficient, β is the thermal expansion coefficient. The reference

quantities σ0, ρ0 and ν0 are evaluated at the mean temperature T0. The superscripts

"l" and "g" relate to the liquid and gas phase, respectively. The variation of the

surface tension γ is essential, as it is one of the driving forces of the flow in two-

phase system and it appears in the boundary conditions. In terrestrial environment,

thermal expansion is treated in the framework of the Boussinesq approximation

such that density variations are only taken into account in the buoyancy body-force

term.

The dynamics of the system in the geometry of Fig. 2 is described by the momen-

tum, continuity and heat transfer equations for incompressible Newtonian fluids
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which are written for gas and liquid:

∂t
~V g +(~V g ·∇)~V g =−

1

ρg
∇Pg +

µg

ρg
∇

2~V g +~g, (5)

∇ ·~V g = 0, (6)

∂tT
g +~V g ·∇T g = χg

∇
2T g, (7)

∂t
~V l +(~V l ·∇)~V l =−

1

ρ l
∇Pl +

µ l

ρ l
∇

2~V l +~g, (8)

∇ ·~V l = 0, (9)

∂tT
l +~V l ·∇T l = χ l

∇
2T l, (10)

where ~V and p denote the velocity and pressure fields, T is the temperature; µ is

the dynamic viscosity; χ is the thermal diffusivity and~g is the gravity vector.

3.2 Boundary conditions

Below we discuss boundary conditions of the two-phase flow system with an inlet

and outlet. In accordance with the governing equations the boundary conditions are

written in dimensional quantities and in the cylindrical coordinate system (r,ϕ,z).

1) On the plane ends of the rigid rods which are in contact with liquid as well as

on the lateral surfaces of the rods which are in contact with gas, we assume no-slip

and no-penetration boundary conditions and imposed temperatures.

~V l(z = Hc) =~V l(z = Hh) = 0, when 0 ≤ r ≤ R0; (11)

T (z = Hc) = Tc, T (z = Hh) = Th, when 0 ≤ r ≤ R0; (12)

~V g(r = R0) = 0 when 0 ≤ z ≤ Hc; Hc +d ≤ z ≤ L; (13)

T (r = R0) = Tc when 0 ≤ z ≤ Hc; (14)

T (r = R0) = Th when Hc +d ≤ z ≤ L; (15)

2) No-slip conditions are imposed on the wall of the external tube at r = Rout ; in nu-

merical simulations the tube is kept either at constant temperature T ∗ or thermally

insulated:

r = Rout , 0 ≤ z ≤ L : ~V g = 0. (16)

T g = T ∗ or ∂nT = 0 (17)
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3) Introducing the notation for the gas/liquid interface h = r(z,ϕ, t) the following

boundary conditions are adopted:

(a) With the normal vector ~n directed out of the liquid, the boundary condition on

the free surface between the viscous fluid and the inviscid gas can be written as

[Pl −Pg ]ni −
(

Sl
iknk −S

g
iknk

)
=− [σ(∇ ·n) ]ni − τ i ·∇σ (18)

here Sik = S = η(∂Vi/∂xk + ∂Vk/∂xi) is the viscous stress tensor. The tangential

projections of Eq. (18) define the driving thermocapillary force

τ ·Sl ·n− τ ·Sg ·n =−
∂σ

∂τ
(19)

The normal projection defines the shape of interface,

[Pl −Pg ]−
(

n ·Sl ·n−n ·Sg ·n
)
=−σ(∇ ·n) (20)

here σ(∇ ·n) = σ
(

1
R1

+ 1
R2

)
is the Laplace pressure where R1 and R2 are the prin-

cipal radii of interface curvature. In the absence of flow Eq. (20) reduces to the

well known Young-Laplace equation which determine the static shape of a liquid

bridge.

A cylinder of motionless liquid, longer than its circumference is unstable, i.e. liquid

bridges with aspect ratio Γ ≥ 2π . This limit, called the Plateau–Rayleigh stability

limit, can be understood in terms of small axisymmetric disturbances that preserve

volume. For short bridges, disturbances in azimuthal direction dominate those in

radial one. For long bridges, the reverse is true. The presence of a flow either within

or outside the cylinder can influence the pressure distribution and the flow stabil-

ity. There exist experimental studies by Lowry and Steen (1997); Uguz, Alvarez,

and Narayanan (2010) considering the behavior of an isothermal liquid bridge sur-

rounded by co-axial flow of a immiscible fluid. In both studies, the focus was

made on enhancing the stability of a near-cylindrical liquid bridge approaching the

Plateau–Rayleigh limit by using the interplay between density imbalance and flow.

The JEREMI experiment may verify the elongation of the length of a liquid bridge

beyond the Plateau–Rayleigh limit using stabilization by parallel gas flow although

it is yet fixed.

(b) Tangential velocities of liquid and gas are equal; the temperatures of liquid and

gas are equal.

V l
τ =V

g
τ , T l = T g; (21)
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(c) The kinematic condition at the interface r = h(z,ϕ) provides

Vr =
∂h

∂ t
+

∂h

∂ z
Vz +

1

h

∂h

∂ϕ
Vϕ (22)

Typically, the dynamic deformations caused by the flow of liquid and gas are very

small (Montanero, Ferrera, and Shevtsova, 2008; Matsunaga, Mialdun, Nishino,

and Shevtsova, 2012) and can be neglected. Thus, the hydrostatic liquid bridge

form provides a good approximation of the surface shape. In this approach

Vr = 0. (23)

(d) The energy conservation at the interface implies a balance between the heat

fluxes in both phases

kl ~n ·∇T l = kg~n ·∇T g, (24)

4) At the inlet at z= 0 (or z= L) the flow is unidirectional and only the axial velocity

is non-zero. It has either a parabolic profile or constant value. Alternatively, a

constant flow rate, Qin can be used as boundary condition. The temperature of the

gas is a parameter of the problem or is equal to the rod temperature.

Ug
z = F(r), Ug

r =U
g
ϕ = 0, T g = Tin, R0 < r < Rout (25)

5) The flow velocity and pressure at the outlet are not known prior to the solution

of the flow problem. The "soft" conditions are applied at outflow boundaries when

the velocity profiles are physically appropriate for fully-developed flows, i.e. the

velocity profiles are unchanging in the flow direction:

∂U
g
z

∂ z
=

∂U
g
r

∂ z
=

∂U
g
ϕ

∂ z
= 0,

∂T g

∂ z
= 0. (26)

The question of whether these conditions allow perturbations to penetrate back

inside the tube have been investigated previously by Gaponenko, Ryzhkov, and

Shevtsova (2010).

The system is multi-parametric; except the Bond numbers introduced in Eq.(1),

the control parameter for the shape of the liquid bridge are the aspect ratio Γ, and

the relative liquid volume V , and Capillary number Ca, relevant to dynamic de-

formations. The additional geometrical parameter ΓR is the aspect ratio in radial

direction.

Γ =
d

R0

, V =
Vol

πR2
0 d

, Ca =
ρν2

σ0 d
, ΓR =

Rout

R0

. (27)
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Here the capillary number Ca is defined as the ratio of viscous force per unit of area

to the capillary pressure as it fits to the deformations caused by a thermocapillary

flow and by shear stress. There exists another definition of the Capillary number as

the ratio of the hydrodynamic pressure to capillary pressure, C = γ∆T/σ0.

The major parameters controlling the flow are: Prandtl number Pr, Grashof number

Gr, Reynolds number of the gas Re, Marangoni number Ma, viscosity ratio µ̃ ,

thermal conductivity ratio k̃

Pr =
µ

ρ χ
, Gr =

β∆T gd3

ν2
, Reg =

ρgU
g
0 Dh

µg
, Ma =

γ∆T d

µ lχ l
, µ̃ =

µ l

µg
, k̃ =

kl

kg
,

(28)

here U
g
0 is the mean gas velocity at the inlet, ν = µ/ρ is the kinematic viscosity

and Dh = 2(Rout −R0) is the hydraulic diameter which is a typical length scale in

an annulus.

4 Results

4.1 Two-phase flows and oscillatory instability m = 0 (Y. Gaponenko, V. Shevt-

sova)

4.1.1 No forced gas flow

Here we present results of non-linear simulations in the liquid and in the ambient

gas for the axisymmetric case. Figure 3 shows isolines of stream functions (upper

raw) and temperature field (lower raw) in two phases without forced gas motion for

various experimental conditions. The difference between plots (a, b, c) in Fig. 3

occurs in the gravity level and in the temperature of the outer tube. The constant

temperature is imposed on the external tube. The liquid moves from the hot to the

cold side along the interface and entrains the passive gas. To make the gas flow

structure visible the levels of streamlines in gas and liquid are very different. The

coordinate z = 0 is placed at the beginning of liquid zone. The geometry scales are

R0 = d = 3 mm, Rout = 7 mm, Hc = Hh = 2 mm.

The gravity produces a large secondary vortex in the gas near the external cold

tube, compare Fig. 3a with Grg = 0 and Fig. 3b with Grg ≈ 200. The velocity in

this vortex is very small and does not affect much the temperature field in the area

of its location. Our analysis has shown that decrease of the duct width squeezes

the secondary vorticity and then it vanishes; for the considered parameters it occurs

at Rout = 5 mm. Gravity also causes an additional vortex in the liquid close to the

cold wall (Grl ≈ 2.53 · 104 in Fig. 3b, 3c). It leads to the decrease of velocity on

the hotter part of the interface.
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(a) (b) (c)

Figure 3: Isolines of stream functions and temperature field in two phases /without

forced gas motion, Pr = 68, ∆T = 10K,Ug
0 = 0, Γ= 1, ΓR = 7/3. (a) T (r =Rout) =

Tc, g = 0; (b) T (r = Rout) = Tc, g = g0; (c) T (r = Rout) = T0, g = g0.

Another important parameter for the gas flow structure is the viscosity ratio be-

tween the two phases. In the case of the fluids 5cSt silicone oil/gas, µ l/µg = 255.

The large viscosity ratio causes the sharp gradients of the velocity on both sides of

the interface. Our calculations have shown that replacing silicone oil by the acetone

(µ l/µg = 17) the shear driven flow in the gas becomes strong enough to suppress

the secondary vortex driven by the gravity.

Changing temperature of the outer wall from Tc to the mean temperature T0 affects

drastically the heat transfer through the interface and the flow structure, see Fig. 3c.

Correspondingly, the heat flux through the interface is different from two previous

cases, although in all the cases the heat flux is positive and interface is loosing

heat. Here we would like to draw attention to the following point: the presence

of ambient gas even at the mean temperature, which is natural for any experiment,

cools the free surface.



210 Copyright © 2014 Tech Science Press FDMP, vol.10, no.2, pp.197-240, 2014

4.1.2 Impact of forced gas flow

The non-steady two-dimensional problem was solved using dimensional variables

in two domains for each phase separately with taking into account the boundary

conditions at the interface. The problem is analyzed in the absence and presence

of gravity. The commercial solver FLUENT v.6.3 was used for solving governing

equations Eqs. (2)–(26).

The steady flow was examined for the mean gas temperature at the inlet and at the

outer tube. For large viscosity ratio µ l/µg the shear stresses caused by gas are small

and the thermal effects plays an important role. The steady temperature distribution

in radial direction in both phases at the middle of the liquid zone is shown in Fig. 4a

for different direction of the gas flow with respect to the liquid. The temperature

inside liquid remains practically the same regardless the gas-flow direction when its

velocity is low, Ug ≤ |0.05|m/s. Outside of the liquid, the gas temperature decreases

almost linearly towards the external wall in the case of passive gas, curve 1. When

gas enters from the hot side, (curves 2 and 3) its temperature is increasing with

respect to the motionless gas. Opposite situation is observed when gas enters from

the cold side (curves 4 and 5), the gas temperature decreases. The deviation of the

temperature from that of motionless gas grows with the gas velocity and its profile

also depends on the length of the solid rods.

Entering the duct, the gas is moving along the hot (cold) rod during the time ∼
Hh/U

g
0 while the thermal time is δ 2/χg, where δ is the length scale of the pre-

heated zone in gas in radial direction. Thus, the layer of the gas pre-heated by rods

has thickness

δ ∼
√

H χg/U
g
0

For relatively small U
g
0 (curves 2 and 3) the gas is heated over the entire duct width,

δ ∼ (Rout −R0) and it loses heat being in contact with liquid. With increase of the

gas velocity the temperature profile across the duct deviates from linear one. The

deviations are much larger when gas enters from cold side. The similar trends were

observed in the experiments described below, see Fig. 9 in the section 4.3.

Two-phase simulations allow us to determine the local and average heat fluxes

through the interface. The local heat flux q̃(z) through the free surface area is

determined as

q̃(z) =−kl ∂rT
l

r=R0
and can be scaled as q̃(z) =

kl
∆T

R0

q. (29)

where q is dimensionless heat flux. Considering the flow only in liquid phase, the

heat flux through the unit of the free surface can be written using the Biot number,
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(a) (b)

Figure 4: (a) Temperature profiles in the radial direction in the middle of liquid

zone for different gas velocities: curve 1 corresponds to Ug = 0; curves 2 and

3 correspond to gas entering from hot side with velocity Ug = −0.02 m/s and

Ug = −0.05 m/s, respectively; curves 4 and 5 correspond to gas entering from the

cold side with velocity Ug = 0.02 m/s (Reg ≈ 6) and Ug = 0.05 m/s (Reg ≈ 14), re-

spectively; (b) The Biot number as a function of gas velocity calculated via average

heat flux through the interface. Other parameters for both graphs are ∆T =15 K and

Earth gravity g = g0.

Bi,

qBi =−kl ∂rT
l

r=R0
= h(Ts −Tamb) or qBi = Bi

(
kl

R0

)
(Ts −Tamb), Bi =

hR0

kl
.

The net flux though interface is determined as Q = 2πR0

∫
q(z)dz. The equality of

the flux Q calculated via Eq. (29) and via qBi provides relations for determination

of the Biot number from two-phase calculations

Bi =
∆T

δT
q, where δT =< (Ts −Tamb)>, qav =

∫ 1

0
qd[z]. (30)

here qav is dimensionless averaged heat flux. There is some uncertainties in this

definition related to the choice of Tamb, see discussion by Gaponenko and Shevtsova

(2012). The variation of Biot number as a function of the gas velocity is shown in

Fig. 4b for δT = ∆T (solid curve) and for δT = 0.4∆T (dashed curve). It provides

Bi ≈ 0.2 (or 0.5) for passive gas Ug = 0, decreasing in the case of hot side gas

Ug < 0 and increasing in the case of cold side gas Ug > 0. The heat flux is positive

when the liquid locally loses heat and negative for heat gain. Again, these results

show the same trend as the experimental ones, presented in Fig. 10 in the section

4.3.

We have found a new oscillatory instability at the critical values of the couple

[∆Tcr,U
g
0cr] when the gas is blown from the cold side, (Shevtsova, Gaponenko,
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Figure 5: (a) Stability diagramm (∆T vs U
g
0 ); (b) Convection cells on the interface

as projection of the interface velocity Ug = 1.5 m/s, ∆T = 12K. The dotted curves

specify the regions with the negative velocity on the free surface.

and Nepomnyashchy, 2013). The stability diagram presented in Fig. 5a displays

a limited region of the parameter space where the instability occurs. We assign

the appearance of the instability to the interface cooling by the gas with additional

action of counter directed shear stresses which decelerate the velocity of the free

surface. The instability evolves under the action of three effects: the shear stress

diminishing the interface velocity, the radial velocity disturbance tending to shift

the temperature disturbance downward, and the plain drift of the disturbance by

the net thermocapillary flow. Some similarity can be found with the problem con-

sidering inclined temperature gradient in liquid layer of water-air system (Nepom-

nyashchy, Simanovskii, and Braverman, 2001). The dashed curve in Fig. 5a depict

the boundary between two oscillatory regimes when the first (I) is controlled by the

Marangoni force and second (II) is controlled by the shear stress.

The convection cells in the oscillatory regime II are shown in Fig. 5b as projection

of an interface velocity. In the central part, the large elongated cells (indicating a

positive velocity) alternate with the smaller cells (indicating a negative velocity).

The dashed curves specify the region with the negative velocity. On the cold side,

the small horizontally extended cells designate the presence of the permanent vor-

tex caused by the gas flow and the wavy horizontal curve depicts the location of the

zero axial velocity. Accordingly, the uniform colors near the hot wall show the sta-

ble position of the vortex caused by the Marangoni flow. Thus, two basic vortices

with opposite circulation are attached to the end walls. The large vertical cells also

highlight the area of maximal vortex activity, wherein the two other weak vortices

appear and fade over time. The convective cells clearly show that traveling wave in

the presence of a cold gas flow propagates from the hot to cold end. We attribute

the unusual direction of the wave propagation to the inverted radial temperature
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distribution in the liquid near the interface, which is developed due to the cooling

of the interface by the cold gas flow.

Apparently the thermal effect of the gas is more important than the shear stress

provided by gas for high Prandtl numbers. In our opinion the suitable parameter

for analysis of the instability is the Péclet number, Pe =U
g
0 (µ

g/µ l)R0/χ l), which

expresses the relative contribution of advective to thermal diffusive transport. More

detailed discussion about role of viscosity ratio can be found in Shevtsova, Gapo-

nenko, and Nepomnyashchy (2013). Presently, the study of two-phase non-linear

problem is continued in three-dimensional formulation.

4.2 Flow stability (M. Lukasser and H. C. Kuhlmann)

Correct prediction of the critical onset of hydrothermal waves in thermocapillary

liquid bridges is very important for the planned JEREMI experiment, as the a priori

knowledge of the temperature difference beyond which the flow becomes oscillato-

ry saves a large amount of microgravity-experiment time which would otherwise be

consumed to search for the critical point. This is particularly important for larger-

size liquid bridges, because the relevant thermal diffusion time increases quadrati-

cally with the linear dimension of the liquid volume.

To compute the critical Marangoni numbers and oscillation frequencies a linear

stability analysis of the steady basic axisymmetric thermocapillary flow in liquid

bridges is carried out. To that end the code MaranStable has been developed. It

is based on finite volumes on a non-uniform staggered grid. In a first step the

axisymmetric basic flow is calculated. Based on this, the linear stability of the

basic flow is calculated using three-dimensional normal modes in the second step.

The code is capable of taking into account

1. forced convection and heat transfer in the ambient gas,

2. static liquid–gas interfacial deformations of the liquid bridge,

3. temperature-dependence of the material properties of the liquid and the gas,

4. flow-induced (dynamic) free-surface deformations caused by the steady basic

flow.

Of these points the third one has the largest effect on the flow stability, in particular,

the variability of the viscosity of the liquid. Variable fluid properties are important

when the critical temperature difference is large. Such situations are expected to

arise when the outer gas flow and the thermocapillary surface flow of the liquid

bridge are oriented in the same direction (co-flow configuration, see below). The
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code was extensively verified, by comparison with published results (e.g. by Lev-

enstam, Amberg, and Winkler, 2001) and also with independent computations of

Y. Gaponenko (private communication).

The coupling of the flows and the temperature fields in the liquid and the gas phase

is demonstrated in figure 6 for the two-dimensional axisymmetric thermocapillary

flow for Pr = 67 and Ma/Pr = 362 using the geometry and the fluids (argon and

silicon fluid “KF-96L - 5”) as defined in the JEREMI project. The material data

were evaluated at the mean temperature. The boundary conditions are in the range

of the experimental parameters for a subcritical flow with ∆T = 26◦C. For these

parameters a two-dimensional axisymmetric flow is expected. A counter-flow sit-

uation is considered in which the gas flow (left to right) is directed opposite to

the thermocapillary flow on the free-surface (right to left). From the inlet with a

constant radial profile of the axial gas velocity a fully-developed annular channel

flow develops. In the vicinity of the free surface very sharp velocity gradients arise

owing to the much small kinematic viscosity of the gas as compared to that of the

liquid. This is shown in the circular inset for the flow in the gas phase near the free

surface and the hot disk axially bounding the liquid bridge. Due to the free-surface

flow on the liquid side the axial gas flow is reversed within a very shallow layer

at the free surface. The radial gradients of the axial velocity become less near the

middle of the free surface and grow larger again near cold wall owing to the sharp

peak of the thermocapillary stress on the interface near the cold wall (Kuhlmann,

Wanschura, Rath, and Yoda, 2000). As the free-surface jet impinges tangentially on

Figure 6: Axial velocity profiles for the combined forced and thermocapillary flow

for Ma/Pr = 362, Pr = 67 shown at axial positions indicated by vertical black lines.

Material properties of argon (blue) and silicon fluid “KF-96L - 5” (red) at T0 = 25◦C

were used.
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Figure 7: Critical thermocapillary Reynolds number as a function of the mean ve-

locity w0,in in the gas phase. The shaded region is linearly stable.

the cold corner a very thin layer of a reversed gas flow arises on the cold cylindrical

wall (large oval inset). These considerations indicate the accuracy requirements to

correctly resolve the flow field and the associated large numerical effort.

Turning to the linear flow stability, a typical example for silicon fluid KF-96L-5

and argon at 25◦C and 101325 Pa is given in figure 7. For these calculations we as-

sumed a cylindrical liquid volume with a non-deformable free surface and constant

material parameters. The critical thermocapillary Reynolds number Re = Ma/Pr

is shown as a function of the mean velocity U
g
0 in the gas phase. Color indi-

cates the azimuthal wave number m of the critical mode and the type of instability

(oscillatory/stationary) is qualitatively indicated by ωc. For the given parameter-

s (Γ = Hh/d = Hc/d = 1 and Rout/R0 = 2) the critical thermocapillary Reynolds

number is very sensitive to the motion in the gas phase as indicated by the steep

slope of Rec for U
g
0 → 0 m/s. On the scale shown in the figure a slight gas stream

co-flowing with the thermocapillary surface flow can (linearly) stabilize the steady

basic state by about one order of magnitude of the critical Reynolds number. More-

over, for a stronger co-flow a linearly stable window appears upon an increase of

the magnitude of the gas flow. A similar non-unique linear stability boundary arises

for counter-flow. Quite generally, the counter-flow configuration is more unstable

than the co-flow configuration.

To compare the numerical linear stability data with experimental results obtained
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Figure 8: Critical temperature difference as function of the length d of the liquid

bridge computed for a model of the space experiment MEIS-II (cf. text). The exper-

imental data of Kawamura, Nishino, Matsumoto, and Ueno (2010) are represented

by the dots.

under zero gravity during the space experiment MEIS-II (Kawamura, Nishino, Mat-

sumoto, and Ueno, 2010) the real geometry of the space experiment has been ap-

proximated using an annular gas cavity as shown in figure 3 with R0 = 0.015 m,

Rout = 0.045 m, Hc = 0.019 m, and Hh = 0.008 m. The length d was varied. The

liquid was 5 cSt silicone oil with nominal Prandtl number of Pr = 69 and the gas

was argon. The outer shield and the solid annular disks bounding the gas were

maintained at 22◦C. The cold cylinder was kept at 20◦C while the temperature of

the hot cylinder was varied, just as in the space experiment. The effect of different

influence factors on the critical temperature difference is explained in figure 8. The

model parameter with the largest effect on the stability boundary is the presence of

an ambient gas. It can be seen that the basic flow in models with an ambient gas

(argon) is less stable than the basic flow in models with an adiabatic free surface

(and no ambient gas). The volume ratio Vr is another important parameter which

considerably affects the stability. Even a small reduction by 0.05 of the volume ra-

tio leads to a sizable stabilization. The stability boundaries vary little when models

with temperature-dependent fluid properties are compared with models whose fluid

properties are evaluated at the mean temperature. It must be noted, however, that

the temperature differences between the disks are moderate in the case considered.

The effect of variable material parameters becomes more pronounced when the
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temperature difference increases: Pairwise comparison of the curves for constant

and variable material properties (dotted blue with the full red curve, full blue with

the full green curve, and dashed green with the full red curve) shows that the crit-

ical temperature differences for both cases are very close to each other whenever

the temperature difference is small, while there is a remarkable difference between

both critical temperature differences when the temperature difference is large.

The critical temperature differences as well as the critical azimuthal wave number

(not shown) depend strongly on the length d of the liquid bridge (or aspect ratio

Γ). While the shapes of the numerical and experimental stability boundaries agree

qualitatively, the quantitative agreement is best for long liquid bridges. The remain-

ing differences can have various reasons. On the numerical side, differences may

result from the idealization of the boundary conditions (thermal boundary condi-

tions along the shield and the heater and cooler rods) or uncertainties in the data

for the thermo-physical fluid properties. Moreover, neglecting dynamic surface

deformations for the perturbation flow might have a small influence. On the ex-

perimental side, it is clear that the boundary conditions and, therefore, the basic

flow are not axisymmetric. This broken symmetry in the space experiment owing

to the asymmetric restriction of the gas phase volume may have an effect on the

stability boundaries and could also be the reason for the onset of oscillations at

lower temperature differences than predicted numerically for perfectly axisymmet-

ric boundary conditions. If the broken axisymmetry is confirmed to be the primary

reason for the deviations of the critical temperature difference, much better experi-

mental onset data can be expected from JEREMI, because of the precisely defined

ambient gas conditions and the nearly perfect axisymmetry of the geometry.

4.3 Experimental studies on Mac at Tokyo University of Science (TUS)

This study is conducted as a series of ground preparation experiment for the join-

t project JEREMI (Japan-Europe Research Experiment on Marangoni Instability)

that aims at future on-orbit experiments in Kibo, the Japanese Experiment Module,

on the International Space Station scheduled for after 2016. One of the main objec-

tives of the JEREMI is to explore the effect of the heat transfer between the liquid

bridge and the ambient gas on the critical conditions at which the flow changes from

steady two-dimensional to oscillatory three-dimensional. Several experimental in-

vestigations have revealed a significant effect of the heat transfer between liquid

and gas on the critical Marangoni number Mac (Kamotani, Wang, Hatta, Wang,

and Yoda, 2003; Ueno, Kawazoe, and Enomoto, 2010). We have paid attention

to the effect of the heat transfer between the liquid bridge and the ambient gas

on the critical condition for the half-zone liquid bridge as well as to particle ac-

cumulation structures (PAS) (see Kuhlmann, Lappa, Melnikov, Mukin, Muldoon,
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Pushkin, Shevtsova, and Ueno, 2014). In order to take into account the effect of

the heat transfer between the liquid bridge and the ambient gas, we employ a coax-

ial shield cylinder to realize a forced upward or downward flow around the liquid

bridge at different gas-flow rates.

4.3.1 Analysis of the thermal fields and heat transfer through the interface

The experimental apparatus is the same as presented in Kuhlmann, Lappa, Mel-

nikov, Mukin, Muldoon, Pushkin, Shevtsova, and Ueno (2014). We employ 2-cSt

silicone oil (Pr = 28.1 at 25◦C) for the liquid bridge and air for the ambient gas as

the test fluids. The liquid bridge is sustained between the top and bottom rods of

R0= 2.5 mm in radius. In the series of the experiments on the critical Marangoni

number Mac the aspect ratio Γ(= d/R0) is varied from 0.46 to 1.0, where d is the

height of the liquid bridge. The external shield made of Pyrex® glass is mounted

coaxially to surround the liquid bridge and enable a symmetric forced flow around

the liquid bridge. We fix the radius of the external shield at Rout=12.5 mm. The

thickness of the glass shield is 1.5 mm.

The direction and the flow rate of the ambient gas flow can be varied. The external

shield contains a small window made of zinc selenide (ZnSe) in order to detect

the surface temperature of the liquid bridge by an infrared (IR) camera through

the external shield and ambient gas region. The height, width and thickness of the

window are 22 mm, 7 mm and 1.5 mm, respectively. We convinced ourselves that

the effect of the partially non-uniformity of the curvature of the internal wall on the

flow field in the ambient gas and in the liquid bridge is negligibly small by carrying

out of a series of preliminary experiments.

Figure 9: Typical example of the radial distribution of the mean temperature in the

ambient gas under Γ = 0.64 as a function of the Reynolds number for the ambient

gas flow Reg.
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Figure 10: Typical examples for the dependence of the Biot number on the gas-flow

Reynolds number Reg. The width of the annular channel through which gas flows

is four times larger than the radius of liquid bridge, Rout −R0 = 4R0

The flow in the ambient gas confined by the external shield is characterized by an

averaged velocity Uavg = Q/π(R2
out−R2

0), where Q is the controlled flow rate in the

gas, and the Reynolds number Reg, defined by Eq.(28). Note, that Reg is positive in

the case of upward flow, conversely Reg is negative in the case of downward flow.

The temperature of the ambient gas is measured by a fine thermocouple at the mid

height of the liquid bridge inserted through a tiny hole in the external shield. The

thermocouple is traversed from the free surface of the liquid bridge to the inner

surface of the shield in steps of 0.1 mm to obtain the radial temperature distribution

shown in Fig. 9.

In order to characterize the heat transfer between the liquid bridge and the ambient

gas we define the Biot number as

Bi =−
λ g

λ l
·

(
∂T
∂ r

)
r=R0

T(r=R0,z=d/2)−Tout

·d, (31)

where λ l and λ g are the thermal conductivities of the liquid and the ambient gas,

respectively, and Tout indicates the temperature of the external shield. A typical

example of the dependence of the Biot number on Reg is shown in Fig. 10. The be-

havior of the experimentally determined Biot number as function of Reg is similar

to that obtained by two-phase-flow simulations, cf. Fig. 4.
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Figure 11: Effect of the ambient gas flow on the onset of oscillatory instability in a

liquid bridge of various aspect ratio Γ when V/V0 = 1.0; experimental results (left)

for 2-cSt silicone oil (Pr = 28.1) are obtained by TUS, while the linear stability

analysis (right) for 5-cSt silicone oil (Pr = 67) is due to Lukasser and Kuhlmann

(private communication). The azimuthal wave mode number m is given near the

symbols for the experimental results (left).

4.3.2 Stability map as function of the gas velocity and the aspect ratio

We have experimentally determined the threshold of the oscillatory instability in

terms of critical Marangoni number Mac as a function of the gas-flow Reynolds

number for several aspect ratios Γ. The results are shown in the left part of Fig. 11.

In all experiments of this figure the volume ratio of the liquid bridge has been kept

constant at V/V0 = 1.0. The azimuthal wave number m of the flow in the liquid

bridge slightly above the critical point is indicated by numbers near the symbols in

the plot.

The critical Marangoni number depends monotonically on the gas-flow Reynolds

number, independent of Γ. This means that Mac decreases as the Reg increases for

Reg > 0, and Mac increases as the absolute value of the Reg increases for Reg < 0.

The critical Marangoni number is quite insensitive with respect to the aspect ratio

and the strength of the gas flow for Reg > 0. For Reg < 0, however, Mac depends

sensitively on Γ and on Reg. One can see that the variation of the Mac against the

Reg is relatively small for smaller aspect ratios (0.46 and 0.64). For larger aspect

ratios (0.82 and 1.0), on the other hand, Mac increases strongly with with Γ in the

case of Reg < 0 and even seems to exhibit a jump on a variation of Reg.
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The results of linear stability analysis (LSA, see section4.2) shown on the right

side of Fig. 11 exhibit the same qualitative dependence of the critical conditions on

the ambient gas flow and on the aspect ratio Γ. The critical values determined in

the experiments are given in terms of the critical Marangoni number (Mac), while

the numerical results are presented using the thermocapillary Reynolds number

Rec = Mac/Pr. Moreover, the ambient gas flow in the experiments is measured

by the gas-flow Reynolds number (Reg), while numerical results use the flow rate.

Note, that there exist differences in the Prandtl number of the test fluid and of the

ambient gas, i.e. 2-cSt silicone oil (Pr = 28.6) and air were used in the experi-

ments, whereas 5-cSt silicone oil (Pr = 67) and argon were used for the LSA. But

regardless of these differences both experiments and LSA show that a downward

flow (Reg < 0) in the ambient gas substantially stabilizes the steady axisymmetric

flow in the liquid when the aspect ratio is decreased from Γ ∼ 1.

We also have been paid attention to the effect of the volume ratio of the liquid

bridge V/V0 on the critical conditions. Figure 12 illustrates the experimental results

for Mac(V/V0) for various Reg. The critical Marangoni number decreases almost

monotonically with the volume ratio. The variation of the critical condition is most

pronounced for negative values of Reg. The dependence of the critical Marangoni

number on the volume ratio for various aspect ratios will be presented elsewhere.

Figure 12: Critical Marangoni number as a function of V/V0 for various Reg un-

der Γ = 0.64. Numbers near the symbols indicate the azimuthal mode number m

observed in the liquid bridge above the onset of instability.
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4.4 Instability mechanisms in a dynamic thermocapillary liquid layer subjected

to a cold gas stream (M. Lappa)

A thorough understanding of the physics underlying the planned JEREMI experi-

ment is of a crucial importance. Such a knowledge can provide a priori important

insights into the dynamics to be observed in space and, accordingly, help expe-

dite the related experimental studies. Along these lines, the work undertaken at

Telespazio has been concentrated on investigating the influence of the considered

thermal and kinematic boundary conditions on the nature of the expected flow in-

stability. Leaving aside for a while the effective liquid bridge case, attention has

been paid to the general problem related to the instability of the two-dimensional

plane parallel flow which can be established in the core of elongated cavities (the

core is the region sufficiently far away from the end regions, where the fluid turns

around, to be considered not to be influenced by such edge effects, see, e.g., Lap-

pa (2007, 2012a)). In the case of flow driven by gradients of surface tension, the

related problem is generally known as the stability of the (Marangoni) return flow.

In spite of considerable research and efforts deployed by different research group-

s, such a fundamental case does not seem to have received the deserved attention.

Even though limited to cases of great simplicity (excluded are any processes that

depend on curvature of the liquid/gas interface or the inherent property of the sys-

tem of being cylindrical), these two-dimensional solutions have proved able to yield

directly or indirectly insights and understanding that would have been difficult to

obtain otherwise. In the simplified situation of adiabatic free interface and no gas

flow (classical problem already considered in the literature, see, e.g., Lappa (2005,

2010) and references therein), it is known that the basic-state temperature field

contains a flow-induced vertical temperature distribution corresponding to a layer

being cooled from below. For this case, the socalled hydrothermal waves always

correspond to the preferred mode of instability. This oscillatory mechanism was

investigated theoretically by Smith and Davis (1983) (indeed, they were the first to

coin the related denomination hydrothermal waves). These waves are known to be

almost two–dimensional in the high-Pr case (Peltier and Biringen (1993); Xu and
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Figure 13: Oscillatory instability of Marangoni flow in a liquid layer with adiabatic

interface (Pr=68, Γ=20, Malayer = 7×104 , Reg = 0; cold side on the left, hot side

on the right; the isolines of the stream-function are shown in two snapshots dur-

ing one period of oscillation): The location of the cells at different time moments

indicates a propagation to the right, i.e. in the upstream direction (for illustration

purposes, in the figure above the depth of the fluid layer is two times its real di-

mension; all rolls rotate in the anti-clockwise sense; the non-dimensional angular

frequency of the wave is ω ≈ 64.74, ω being referred to the time scale R2
0/ν l )

Zebib (1998); Tang and Hu (2005)). A remarkable feature common to all cases is

that the disturbance always travels in a direction with a component in the direction

opposite to that of the surface flow (upstream).

Another interesting feature of this kind of flow is the absence of stationary con-

vective instabilities. Like the Pearson’s instability (Pearson (1958)), the presence

of temperature disturbances on the free surface, however, is an essential ingredient

of the hydrothermal mechanism. It is known, in fact, that this kind of instability

cannot occur when the free surface behaves as a perfectly conducting boundary

(see Lappa (2010) for the necessary mathematical background). Conversely, mech-

anisms as those described, e.g., by Smith (1986) can be retained if the free surface

is allowed to exchange heat with the ambient (Priede and Gerbeth, 2003).

Although our geometry is not cylindrical, for consistency we use the nomenclature

defined in Sect. 3 and refer the reader to that section for the necessary background

in terms of symbols, relevant equations and characteristic numbers. In particular,

the following conditions are considered: Pr=68 (5cSt silicone oil), Hc=0, Hh=0,

Γ=20, Gr=0, Ma = Malayer Γ, Malayer = 7×104 (based on the layer depth), ΓR=2,

µ̃ = 255, k̃ =5.1, ν̃=0.29, Reg=300 (gas injected from the cold side), where Reg is

defined as (Rout −R0)U
g
0 /νg.

For no gas flow and adiabatic interface, a strong cell structure is formed in the re-

gion close to the hot wall (labeled as H in Fig. 13, such a stationary roll existing

near the right wall is basically maintained by the strong temperature gradient es-

tablished in the lateral boundary layer), while the hydrothermal wave is manifested

by the propagation of well-defined convective structures from the cold side toward-

s the hot one, (Smith and Davis, 1983). As shown in Fig. 13, the hydrothermal
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wave looks as a succession of cells moving from the cold side towards the motion-

less rolls on the hot side. This wave "feels" the presence of the steady roll H by

decaying in the region where this roll is located; when a roll dies (see, e.g., the

roll labeled G), a new roll is created at the cold side thereby preserving the overall

number of rolls present in the cavity at any instant.

The numerical simulations, however, show that if gas (air) is injected from the cold

side (at the same initial temperature of the cold sidewall and with a uniform velocity

profile along the vertical coordinate y), the scenario can change dramatically. For

Reg=300 (Fig. 14) the exchange of momentum between the gas and the liquid layer

is such that regions of reversed flow direction are created at the free/liquid gas

interface.

In particular, at any moment the flow pattern can be split ideally in four indepen-

dent circulation systems:

A quasi-steady (motionless) roll, driven by the strong temperature gradient estab-

lished in the lateral boundary layer, stays attached to the hot wall (as in the case with

no gas seen in Fig. 13). A group of cells spatially spreading periodically towards

the cold side (i.e. moving downstream), represents a second independent circula-

tion system. Such a group of rolls is bounded from the right (where such rolls

are being continuously created) by the above mentioned strong convective cell and

from the left (where they decay) by a third region where convection displays again

a quasi-steady behavior. This region is characterized by a relatively stable pattern

consisting of two distinct couples of counter-rotating rolls. Although the two cou-

ples of rolls undergo a limited weak (back and forth) motion along the horizontal

direction, they occupy relatively stable positions (thereby, creating a ’barrier’, i.e. a

resistance to the propagation of the rolls being continuously created at the hot side

and spreading towards the cold side along the second region). As anticipated, under

the impact of the moving rolls coming from the hot side, all the rolls that belong

to the multicellular structure in region 3 oscillate weakly in time (the amplitude of

the velocity oscillations at a fixed point in region 3 is many times smaller than that

at a fixed point located in region 2). Finally, a fourth independent region can be i-

dentified in proximity to the cold wall, where the local patterning behavior consists

of the alternation of two distinct co-rotating rolls and a single vortex formed by the

periodic merging of such rolls.

Comparison of Fig. 14 with Fig. 13 indicates that, since for the case of no gas flow

and adiabatic interface the wave spreads from the cold to the hot side, whereas,

when gas injected form the cold side is considered, a region exists where the oscil-

lations propagate in the opposite direction, these disturbances may be of a different

nature (such a conclusion being also supported by the fact that the oscillation fre-

quency of the multicellular flow in region 2 is many times higher than the frequency
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Figure 14: Oscillatory instability of Marangoni flow in a liquid layer with gas

stream from the cold side (Pr=68, Γ=20, Malayer = 7× 104, Reg=300; cold side

on the left, hot side on the right; the isolines of the stream-function are shown in

two snapshots; all solid-line arrow-less rolls rotate in the anticlockwise sense, rota-

tion in the clockwise sense is expressly highlighted by the use of arrows). A region

exists where the evolution of the cells at different time moments indicates a prop-

agation to the left, i.e. in the downstream direction (the related nondimensional

angular frequency is ω ≈ 1×103, ω being referred to the time scale R2
0/ν l )

of the HTW seen in Fig. 13).

The most interesting insights into these phenomena, however, are obtained when

the temperature distribution is examined (Figs. 15 and 16). When the interface is

adiabatic, the temperature profile is such that a generic point at the free surface is

hotter than other points located (at the same coordinate) below the interface (i.e. a

positive vertical temperature gradient exists, Fig. 15). When the cold gas flow is

considered, however, for the present conditions (Reg=300), it can be clearly seen

that the region affected by the rolls propagating towards the cold side displays a

temperature profile where the situation described above is reversed (in terms of

temperature variation along the vertical direction in proximity to the interface, the

vertical temperature gradient is negative, Fig. 16).

Such observations, if properly interpreted in the light of the arguments developed

earlier on the nature of the instability, lead to the general conclusion that in the

presence of a cold gas current entering the system from the left (cold) side, the

classical hydrothermal wave (typical of high–Pr liquids where disturbances derive

their energy from the vertical temperature gradient through vertical convection,

Smith (1986)) may be taken over by a different mechanism. Although disturbances

will still derive their energy from the vertical temperature gradient through vertical

convection, however (given the reversed sign of the vertical temperature gradien-

t), effects similar to those typical of the Pearson (Marangoni–Bénard) instability

should be expected.
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Figure 15: Snapshot of temperature distribution for the same conditions considered

in Fig. 13

Figure 16: Snapshot of temperature distribution for the same conditions considered

in Fig. 14

Albeit, technically speaking, the Pearson (Marangoni-Bénard) instability is a sta-

tionary bifurcation, we ascribe the observed motion of the rolls (towards the cold

side) to the fact that, unlike the classical Marangoni-Bénard problem, in the present

case the unstructured (initial) base state in the cavity is characterized not only by

a vertical temperature gradient but also by a symmetry-breaking shear flow (the

Marangoni surface stresses driven by the imposed horizontal temperature gradient

imply vertical gradients of horizontal velocity). By breaking the in-plane isotropy

of the usual horizontal layer heated from below, the presence of this shear flow

may explain the observed departure of the dynamics from well-known Marangoni-

Bénard (stationary) dynamics.

In general, these results support the recent findings by Shevtsova, Gaponenko, and

Nepomnyashchy (2013), who found similar behaviors and came to similar conclu-

sions in the liquid bridge case.

4.5 Dynamic interface deformations due to thermocapillary and shear stresses

4.5.1 Numerical study of dynamic interface deformations due to shear stresses (J.

M. Montanero)

In this section, we analyze the mechanical behavior of an isothermal liquid bridge

immersed in a coaxial gas stream, paying particular attention to the liquid velocity

field and the free surface deformation caused by the gas stream. For this purpose,
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Figure 17: Streamlines (upper graphs) and axial component of the velocity at the

free surface (lower graphs) for |wg|max/Vc = 28.11 and Bo = 0 (a), Bo = 4.06 (b),

and Bo =−4.06 (c).

the full Navier-Stokes equations were solved numerically with GERRIS, an Open

Source Free Software library developed by Popinet (2003, 2009). We considered

the boundary conditions mentioned in Sec.3.2, except at both the inlet and the outlet

of the gas, where the fully developed flow condition for an annulus was prescribed

(Herrada, López-Herrera, Vega, and Montanero, 2011).

The geometrical parameters were: R0 = 3 mm, Rout = 5 mm, and d = 3 mm. The

liquid bridge volume was that of the cylinder delimited by the two rods. The work-

ing liquid was 5-cSt silicone oil (ρ l = 919 kg/m3, µ l = 4.60× 10−3 kg/ms, and

σ = 0.020 N/m), while the gas was air at normal conditions (ρg = 1.22 kg/m3

and µg = 1.7× 10−5 kg/ms). This parameter set was also considered by Gapo-

nenko, Ryzhkov, and Shevtsova (2010). The corresponding dimensionless parame-

ters characterizing the fluid configuration were: Γ = 1, ΓR = 1.67, V = 1, µ̃ = 271,

Ca = 3.84×10−4, and Bo = 0 (zero gravity) or Bo = ±4.06 (normal gravity con-

ditions), where the positive (negative) sign applies when the gas flow and gravity

force have the same (opposite) directions. We considered several values of the gas-

flow rate, as indicated by the maximum magnitude of the axial velocity component

at the gas inlet, |wg|max. In the set of dimensionless numbers, the gas Reynolds

number Reg was replaced by |wg|max measured in terms of the capillary velocity

Vc = R0/tc, where tc is the capillary time tc = (ρ lR3
0/σ)1/2.

The simulation started from a cylindrical liquid bridge at rest immersed in a coaxial
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Figure 18: (Color online) Reduced pressure and kinetic energy distributions for

|wg|max/Vc = 56.34 and Bo = 0 (a), Bo = 4.06 (b), and Bo = −4.06 (c). The lines

in the liquid bridge are isobars. The high and low pressure regions are indicated by

the labels H and L, respectively. The colors blue and red correspond to the lowest

and highest kinetic energy values, respectively.

gas stream with a velocity field corresponding to the fully developed flow condition

in the entire gas domain (Herrada, López-Herrera, Vega, and Montanero, 2011).

For Bo 6= 0, moderately large free surface oscillations appeared in the transient

regime due to gravity. Figures 17-20 show the results obtained in the steady regime.

The streamlines in both the liquid and gas domains for zero (a) and normal (b and

c) gravity conditions are plotted in the upper graphs of Fig. 17. A recirculation

cell is set in motion driven by the viscous shear stress exerted over the interface

by the gas stream flowing leftwards. The liquid moves leftwards in a boundary

layer close to the free surface. In the left part of the liquid bridges (a) and (b),

momentum accumulates (see Fig. 18), the reduced pressure increases, and the

liquid is pumped rightwards through the bulk. On the contrary, liquid inertia has

to overcome the adverse reduced pressure gradient in the bulk for Bo < 0. As

shown in the lower graphs of Fig. 17, the velocity distribution over the free surface

considerably depends on the Bond number value.

The mechanism driving the liquid recirculation for Bo ≥ 0 is more energetically

efficient than that of the case Bo < 0. In the former case, viscous tangential stress

exerted by the gas stream and the favorable reduced pressure force collaborate with

each other to keep the liquid in motion: while the formed makes the liquid move

downwards in the boundary layer, the latter helps the liquid flow back through the

bulk. On the contrary, both viscous tangential stresses and pressure forces push

the liquid in the same direction through the boundary layer for Bo < 0. The kinetic

energy accumulated in this first stage of the motion is used to overcome the adverse

reduced pressure gradient in the liquid bridge bulk. This results in a greater kinetic

energy dissipation which reduces significantly the recirculation speed. The values

of both the vorticity and the viscous dissipation function are consistent with the

above explanation (Herrada, López-Herrera, Vega, and Montanero, 2011).
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Both the maximum value wl
max of the axial velocity component in the liquid domain,

and the recirculating flow rate Qr = π
∫ h(z)

0 |w(r,z)| r dr, are plotted in Fig. 19 for

(z−Hc)/R0 = 0.5. The dependency with respect to the gas speed is quasi-linear

for the range of velocities considered. We verified that the liquid bridge breaks
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Figure 19: Maximum value wl
max of the axial velocity component measured in the

liquid (a) and recirculating flow rate Qr (b) as a function of |wg|max for Bo = 0

(open symbols), Bo = 4.06 (circles), and Bo = −4.06 (triangles). The squares in

(a) correspond to the simulations for Bo = 0 with a rigid free surface.

up for |wg|max/Vc ∼ 60. For Bo > 0, the liquid bridge moves much faster than in

the other two cases, which can be explained as follows. Gravity turns a cylindrical

free surface into an amphora-type shape. The gas accelerates close to the free

surface delimiting the bulging region of the liquid bridge due to simple continuity

arguments, which increases the viscous stress there. The momentum transferred

to the liquid in that region also increases, which results in a faster recirculation

cell. The same argument could be also applied to the case Bo < 0. However and

as explained above, the recirculation cell in this case is more dissipative than for

Bo ≥ 0, which hinders significantly its motion.

Figure 19a also shows the results calculated when the interface is regarded as a rigid

cylindrical boundary. In this case, the velocity component normal to the interface

vanishes, while the tangential velocity component and the stresses take the same

values on both sides of the free surface. While these simplifications accelerate

significantly the calculations, they still lead to relatively accurate predictions for

wl
max.

Figure 20a shows the interface deformation h− h0 with respect to the equilibrium

shape h0 for different gas velocities. For Bo ≥ 0, the recirculation pattern made the
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Figure 20: (Left, Color online) Interface deformation h − h0 for Bo = 0 (open

symbols), Bo = 4.06 (black symbols), and Bo = −4.06 (red symbols). The up-

triangles, down-triangles, circles, and squares correspond to |wg|max/Vc = 28.11,

34.37, 42.20, and 56.34, respectively. (Right) Maximum magnitude |h− h0|max

of the interface deformation as a function of |wg|max for Bo = 0 (open symbols),

Bo = 4.06 (circles), and Bo =−4.06 (triangles).

hydrostatic pressure increase in the lower part of the liquid bridge, which bulged in

that region. The interface deformation for Bo = 4.06 was significantly larger than

in the absence of gravity for two reasons. Firstly, the liquid bridge was closer to

its stability limit for Bo = 4.06 (Slobozhanin and Perales, 1993), and thus its shape

was more sensitive to variations in the pressure distribution; and (ii) as mentioned

above, the liquid bridge moved much faster for Bo = 4.06 than in the absence of

gravity, and thus the increase of hydrostatic pressure in the lower region was consid-

erably higher for the former case. Interestingly, the shape and magnitude of that de-

formation resembles that produced by thermal convection in high-Prandtl-number

liquid bridges (Montanero, Ferrera, and Shevtsova, 2008). For Bo = −4.06, the

deformation shape is the opposite because the hydrostatic pressure decreases (in-

creases) in the lower (upper) part of the liquid bridge. The deformation magnitude

is similar to that of the case Bo= 0, as occurs with the recirculation speed. The stat-

ic (due to gravity) and dynamic deformations have the same shape for both Bo > 0

and Bo < 0. Therefore, one may expect that the gravitational force collaborates

with the gas stream in destabilizing the liquid bridge.

The maximum magnitude |h− h0|max of the free surface deformation is shown in

Fig. 20b as a function of the gas velocity. A linear dependency is observed for both

weightless and normal gravity conditions. In all the cases, the deformation caused

by the gas stream was less than 20 µm, much smaller than that associated with

gravity (for instance, the maximum static deformation |h0 −1|max is about 100 µm
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for the liquid bridge considered in this section). One does not expect the dynamical

interface deformation to alter considerably the liquid bridge response to thermal

gradients.

4.5.2 Measurements of the dynamic surface deformation due to shear stresses (A.

Mialdun, K. Nishino, V. Shevtsova)

The dynamic free-surface deformations induced by flow are experimentally stud-

ied in a confined liquid volume of 5cSt silicone oil (Prandtl number Pr = 68). The

geometry of the problem is a vertical liquid column concentrically surrounded by

an annular gas channel. A gas stream entering the duct from the top or bottom car-

ries the motionless liquid. The dynamic deformation of the gas–liquid interface is

caused by a steady axisymmetric shear-driven flow. The experiments are performed

in normal gravity conditions and the static deformation of a liquid bridge interface

is unavoidable.

h-h
0 ( m) h-h

0 ( m)

Figure 21: Extrema of the dynamic deformation at upper (circles) and lower (trian-

gles) parts of a liquid bridge as a function of volume ratio V . The different curves

with symbols (in order by the distance from the axis) correspond to the gas velocity

U
g
0 = 1m/s, 1.5m/s and 2 m/s. (left) Gas enters from the bottom. (right) Gas enters

from the top.

The magnitude and shape of the dynamic surface deformation were analyzed using

optical measurements with a comprehensive treatment of the images. The deviation

of the free surface shape from the corresponding equilibrium profile is determined

with an uncertainty of about 0.1µm. The order of magnitude of the interface de-

formation is proportional to the capillary number, which is defined as the ratio of

the viscous force per unit area to the capillary pressure. The study is performed

for a large range of volumes and aspect ratios as well as for different gas velocities

Matsunaga, Mialdun, Nishino, and Shevtsova (2012).
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As a general trend, the dynamic deformation grows with the gas velocity, which

plays the role of a driving force, but a linear dependence is not observed for all vol-

ume ratios, despite the small Reynolds numbers, 280 < Reg < 560. The dynamic

deformation displays a strong dependence on the liquid volume ratio and the di-

rection of the gas stream parallel to the interface. When the gas flow is directed

against gravity, the largest interface deformations are observed at the smallest vol-

umes among the analyzed ones, see Fig.21 (right). In contrast, when the gas stream
(z
-H

c)/
d

h-h
0 ( m)

Figure 22: Interface deformation by flow (h − h0) when V = 1, Γ = 1, and

U
g
0 = 2m/s. Comparison of the experimental (closed symbols) and numerical (open

symbols) results when gas enters from the top (squares) and bottom (triangles). The

numerical results are taken from the paper by Herrada, López-Herrera, Vega, and

Montanero (2011).

is aligned with gravity, then the deformations decrease with a decrease in the vol-

ume ratio, at a certain value attaining zero (vanishing) and then changing sign, see

Fig.21 (left).

The dynamic deformation for the volume ratio V = 1 has been recently calculat-

ed by Herrada, López-Herrera, Vega, and Montanero (2011) for both directions of

gas when U
g
0 = 2 m/s. A comparison of the results is shown in Fig.22, where the

closed symbols correspond to the experiments in this work and the open symbols

correspond to the numerical results. An excellent agreement is observed in the case

when gas enters from the bottom. For the direction of gas from top to bottom, the

agreement is less perfect but still satisfactory. These comparisons with the numer-

ical results (Herrada, López-Herrera, Vega, and Montanero (2011), Gaponenko,

Glockner, Mialdun, and Shevtsova (2011)) show that the experimental technique is

able to give smooth and feasible results in a broad range of volume ratios and shear

stresses.
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4.5.3 Measurements of the dynamic surface deformation caused by a thermocap-

illary flow (J.M. Montanero, V. Shevtsova)

This section closes with some experimental results on the free surface deformation

when a temperature difference ∆T is applied between the liquid bridge support-

ing rods. The dynamical free surface deformation induced by buoyancy and ther-

mocapillary convection in non-cylindrical liquid bridges of 5-cSt silicone oil was

measured in both the steady and oscillatory regimes. The supercritical free surface

shape is the superposition of the static shape, the steady dynamical deformation

due to the basic flow, and the small-amplitude free surface oscillations caused by

the oscillatory instability.

The steady dynamic deformations of the interface were studied in two experimen-

tal runs. The radius of the rods was R0 ≃ 3 mm, while the distance between them

was d ≃ 3.6 mm. Two dimensionless volumes were considered: V = 0.8200 [ex-

perimental run (I)] and V = 0.8764 [experimental run (II)]. The ranges of applied

temperature difference were 0 ≤ ∆T ≤ 32 K and 0 ≤ ∆T ≤ 38 K for the runs (I) and

(II), respectively. The analysis of the temperature series measured by the thermo-

couples revealed that the oscillatory instability appeared at ∆T = 16.80 and 16.55 K

for the runs (I) and (II), respectively (Montanero, Ferrera, and Shevtsova (2008)).

For each ∆T , ten images were acquired to measure the average value 〈h〉− h0. If

the temperature difference is smaller than the critical value, then this quantity is the

free surface deformation caused by the steady axisymmetric thermal convection.

On the contrary, for supercritical values of ∆T , 〈h〉−h0 is a good approximation to
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Figure 23: Dynamic free surface deformation 〈h〉−h0 at different ∆T for the exper-

imental runs (I) (a) and (II) (b). The values of the applied temperature difference

were ∆T = 1.04, 5.46, 11.05, 15.20, 21.76, 25.33, and 31.26 K [run (I)], and ∆T

= 0.01, 3.90, 7.46, 12.03, 18.18, 24.39, 28.39, 32.70, and 37.20 K [run (II)]. The

plots (c) shows the dynamic free surface deformations presented in plots (a) and

(b) normalized by ∆T .

the average of the free surface deformation over the oscillation period, and hence
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can be seen as the deformation caused by the axisymmetric steady flow that un-

derlies that oscillation. The free surface deformation shown in Figs. 24 a and 24 b

monotonically increased with ∆T in the two experimental runs. The remarkable

result of the experimental study is that the deviation of the free surface shape from

the static one grew linearly with ∆T both below and above the onset of instability,

Fig. 23 c, and its maximum value over the free surface had the same order of mag-

nitude as that of the Capillary number (Ca = Γ∆T/σ0). This tendency was also

confirmed numerically ( see Shevtsova, Mialdun, Ferrera, Ermakov, Cabezas, and

Montanero (2008)).

The experiment did not reveal any significant difference between the results ob-

tained in the steady axisymmetric and oscillatory regimes for the mean deforma-

tion. In other words, the hydrothermal waves that appeared in the oscillatory regime

as ∆T increased did not significantly modify the behavior of the mean deforma-

tion shape. The amplitude of the interface oscillations was accurately measured in
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Figure 24: ( (b) Measured z-dependence of oscillations amplitude over the whole

height of the liquid bridge, 5 cSt silicone oil, V =0.88 and ∆T =25.8◦C while ∆Tcr

=16.6◦C. Various symbols correspond to the results from the different displace-

ments of the CCD camera.

a liquid bridge with volume V = 0.88 when ∆T ≈ 1.6∆Tcr (Ferrera, Montanero,

Mialdun, Cabezas, and Shevtsova (2008)). Figure 24 demonstrates a strong z-

dependence of the oscillations amplitude. The greatest change in amplitude occurs

at the upper part, but even in this region, the deformation is one order of magni-

tude smaller than the average dynamic deformation. However, despite smallness

of the amplitude, the appearance of the sustained interface oscillations enables the

measurements of the threshold of the oscillatory instability.
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5 Conclusions

The geometry of the physical problem under consideration is a cylindrical liquid

bridge concentrically surrounded by an annular gas channel. The gas flow in the

annular channel provides two actions on the motion in the liquid: via shear stress-

es and via cooling/heating the gas–liquid interface. The role of shear stresses di-

minishes with an increase of the liquid–gas-viscosity ratio. In future microgravity

experiments this ratio will be large, µ l/µ f = 217, (5cSt silicone oil/Argon) and

the thermal effect will play a dominant role. The problem is multi-parametric and

requires experiments and calculations in a wide parameter space. The target of

the preparatory studies presented is to identify the most important control param-

eters. We have developed a few three-dimensional numerical codes for one- and

two-phase simulations and different experimental setups.

Two-phase simulations allow to determine the Biot number as a function of the

gas-flow rate, which can then be used in a single-phase model. The performed sim-

ulations as well as the experiments show that for moderate values of the Reynolds

number, |Reg| ≤ 100, the Biot number increases monotonically when Reg grows

and changes sign from negative to positive. In the case of a passive gas the Biot

number is in the range 0.2−0.5.

The stability diagram of the flow as a function of the gas-flow rate displays a non-

unique behaviour depending on the velocity and temperature of gas. Generally,

a more intriguing behaviour occurs when gas enters from the cold side (the net

gas flow opposes the surface flow) where 2D, 3D oscillatory and 3D stationary

instabilities are observed at relatively low Marangoni numbers.

The numerical and experimental analysis for 5cSt silicone oil shows that the sur-

face deformation due to the gas flow for the above range of Reynolds numbers is

not significant, about 1− 10µm depending on the flow direction and the gravity

level. Approximately the same magnitude of the surface deformation, 10−20µm,
is caused by the thermocapillary flow itself in the absence of a forced gas flow. For

theses reasons dynamic free-surface deformation can be neglected in numerical

models if the Reynolds number in the gas phase satisfies |Reg| ≤ 100.
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