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Abstract: A contemporary issue of crucial importance for further developments in the field of thermal 

protection systems and related arc-jet-based testing activities calls for improvements in existing abilities 

to measure the centerline total enthalpy. Starting from the original assumptions of Vincenti and Kruger 

(1965) and through the elaboration of a mathematical framework relying on a specific modelling 

hierarchy of balance equations for the moles of different species involved, we show that the extension of 

the Frozen Sonic Flow Method (FSFM) to the case of polyatomic molecules can be made well posed. 

Dedicated experiments have been conducted using a re-entry simulation facility and varying the mass-

averaged enthalpy in the range between 5 and 30 [MJ/kg]. In particular, three different gas mixtures 

have been considered (using Nitrogen as hot feeding gas and adding cold Oxygen, Carbon Dioxide and 

Methane, respectively). The enthalpy ratios calculated by the FSFM, found to depend on the gas mixture, 

have been compared with the values determined using two alternate techniques, namely, 1) the Heating 

Rate Method and 2) the Calorimetric Probe Method. Given the extremely complex experimental 

conditions considered (high-enthalpy, low density, supersonic reactive flows), the agreement between the 

theoretical and experimental results can be considered very satisfactory.   
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Nomenclature 
 
A*

 = cross-sectional area of nozzle throat (m2) 

Cp = specific heat 

ci = mass fraction of the ith species 

0
dh  = dissociation energy MJ/kg 

F =  gamma function  

H = total enthalpy (MJ/kg) 

HT = heat content at temperature T, (MJ/kg) 

K = constant in eq. (29 a) 

kw = catalytic reaction rate constant (m/s) 

Le  = Lewis number  

mg = gas mass flow rate (kg/s) 

m0 = molecular mass of undissociated gas (kg/kmoles) 

n = number of moles 

p = pressure (Pa) 

P = electrical power (kW) 

q = heat flux (kW/m2) 

R = body nose radius (m) 

R0  = universal gas constant (J/kmoles/K) 

Sc = Schmidt number 

T = temperature (K) 

ni
* = molar fraction of the ith species 

Z = compressibility factor  

ΔHf,T = heat of formation at temperature T (MJ/kg) 

 

 =  density kg/m3 

 = catalytic efficiency 

 = corrective factor for the Vincenti and Kruger formula 
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 = number of atoms contributing to the formation of new polyatomic species 

 = number of atoms produced by the dissociation of each polyatomic molecule 

 = ratio of moles of polyatomic and diatomic gas in the initial state 

α = total mass fraction of dissociated species 

μ = viscosity (kg/ms) 

 = isentropic exponent 

 

Subscripts 

 = new polyatomic species not present in the reference state 

ah = arc-heater 

cl = nozzle centerline 

d = diatomic 

e = boundary layer edge 

g =  gas 

H2O = water 

m = monoatomic 

mc = mixing chamber 

ne  = nozzle exit 

p = polyatomic 

t = total condition (at the beginning of expansion)  

ts = test section 

w  =  wall 

 

Superscripts 

0 = reference state (undissociated gas) 

A = undissociated diatomic gas present in the final state 

B = diatomic gas originating from the dissociation of polyatomic gas 
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I. Introduction 

 
Complex fluid flow and heat transfer problems are central to many advanced aerospace systems often at the 

cutting-edge of modern engineering. This is indeed the case of re-entry space vehicles, which require a detailed 

understanding of the overall aero-thermodynamic behavior, including (but not limited to) the distribution of 

pressure, heat flux, and enthalpy. Reliable estimates of such quantities (or high-resolution measurements) are 

typically needed for the proper design and performance assessment of related protection systems (De Filippis et 

al., [1,2]; Zare-Behtash et al. [3,4]). During the re-entry phase, critical or “delicate” vehicle parts such as the 

nose, the leading edge of wings and/or the flaps are subjected to very high temperatures and stresses and would 

degrade quickly if not designed properly to resist high thermal and/or mechanical loads. 

Such problems are generally handled in the framework of on-the-ground testing activities, based on arc-jet 

facilities typically used for the qualification of such thermal protection systems (TPS) (Balboni [5]; Esposito et 

al. [6]; Zuppardi and Esposito [7,8] Esposito et al. [9]; Venkatapathy et al. [10]). The key point with which 

engineers have often to deal with in such a context is represented by the need to mimic effective flight 

conditions with a reasonable approximation. This, in turn, implies the ability to “control” with a sufficient 

degree of accuracy the conditions effectively attained inside these facilities.   

This objective can reasonably be met if the attempt to measure or control precisely the different quantities 

discussed before is limited to one or two of them. Usually the parameter of major concern or interest is 

represented by the heat flux given the crucial role it can play in determining the response of a vehicle (or one of 

its components) to the effective flight conditions. However, also the enthalpy has to be seen as a very important 

influential factor. In many circumstances, indeed, the fluid displays a complex chemical composition essentially 

depending on this parameter. 

Though measuring the enthalpy relating to an arc-jet facility is not straightforward as one would imagine (Suess 

et al. [11]), estimates can be obtained using different strategies such as the sonic throat method (Winovich [12]) 

and the energy balance approach [13]. 

These methods generally share a common feature, that is, they rely on the approximation that the enthalpy can 

be treated as an average quantity over the entire flow field. This, however, should be seen as a crude 

simplification. The enthalpy is indeed known to display a complex spatial distribution, varying significantly 

along the radial extension of the facility due to heat loss through its external boundary and/or according to the 

specific technical solution implemented to generate the arc.  
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Leaving aside for a while the effects of the specific geometry considered, in general, enthalpy in the test section 

of an arc-jet facility typically attains it highest value at the center-line, and then decreases towards the nozzle 

walls. The aforementioned tests aimed to assess the performances of TPS are usually conducted in the inner or 

“core” region. The enthalpy of the core is generally referred to as “center-line” enthalpy; as the reader will have 

realized at this stage, this is the value to be made as close as possible to the flight value. 

Along these lines, over the years a number of possible strategies to determine this quantity have been elaborated 

and in the future, undoubtedly, more exciting activity in this area will be stimulated (the present work being an 

attempt in this direction). Most of the existing approaches have been based on a common pre-conception, that is, 

the ratio of the center-line to bulk enthalpy can be determined as a function of other parameters. In practice, 

such a ratio can depend in a relatively complex way on many different influential factors, these being the 

physical geometry of the heater, the air injection mode into the heater, the gas mass flow rate, the electrode 

configuration, the presence or absence of mixed gases, the geometry of the mixing chamber, the nozzle 

configuration, etc. From a purely theoretical standpoint, however, there is some consensus in the literature that a 

proper characterization of this ratio can be based on a handful of specific measurements and adequate 

mathematical models. 

Indeed, one of the proposed strategies, known as “sonic flow method”, relies on the original idea proposed by 

Winovich [12] that the centerline enthalpy in arc-heated flows originating from high pressure reservoirs (i.e. 

from an equilibrium state), can be determined assuming that the conditions at the sonic point of the nozzle 

correspond to a one-dimensional, isentropic expansion in equilibrium conditions. The method was extended by 

Jorgensen [14], who successfully applied it to flows that are in equilibrium through a reservoir up to the 

beginning of expansion and suddenly freeze at that point (the so-called “frozen sonic point method”). Finally, 

Pope [15] verified the reliability of this approach for high-enthalpy flows which freeze upstream the beginning 

of expansion, the only pre-requisite to its applicability being represented by proper knowledge of the chemical 

composition of the frozen flow. Other techniques have also been elaborated such as that described by Hiester 

and Clark [16], based on center-line measurements of the stagnation point heat flux and pressure used together 

with a heat flux prediction correlation such as that provided by the Fay and Riddell theory (the reader being also 

referred to Zhang et al. [17]).  

In such a context, the experimental parameters to be used as inputs for the application of these methods have 

been determined using various techniques such as spectroscopic and laser scattering methods, energy balance 
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probes, and laser induced fluorescence (LIF) (see, e.g., Scott [18] and Park [19] for exhaustive reviews and 

Suess et al. [11] for valuable recent findings, respectively).  

By examining such material, the reader will realize that work in these fields has progressed with the aid and 

support of experimental results used in synergy with theoretical models to improve the representation of the 

thermofluid-dynamic processes inside arc-jet facilities, moving through very focused examples and situations, 

many of which of a prototypical nature (Park [19]; Esposito et al. [20], Lappa [21]). 

As the interplay between experimental measurements and analytic arguments has been particularly fruitful, new 

efforts have recently been devoted to explore the response of these methods in circumstances for which their 

pre-requisites were thought not to be valid or weak. An example along these lines is represented by the recent 

attempt by Esposito and Aponte [22] to extend the frozen sonic point technique to polyatomic molecules gas 

mixtures. These efforts and synergy with experimental work have led over the years to the establishment of a 

common, elegant theoretical framework based on the original theory for di-atomic molecules elaborated by 

Vincenti and Kruger [23] and Chapman and Cowling [24]. Building on such track of results, the present work 

continues this line of inquiry by probing the role of polyatomic molecules.  

An extension of the ranges of applicability of these techniques is likely to yield important benefits, for example, 

better process control, increased efficiency, improved reproducibility and the capacity to modify or tailor arc-jet 

facilities for specific applications. 

The present paper is articulated into several sections. In Section II, we describe in a schematic way the facilities 

and instruments used to conduct the experiments. Section III is entirely devoted to a presentation of the 

methodological approach and related variants (part of the role of this section is the review of concepts that will 

be applied in later sections). In particular, while Sect. III.A is used to introduce the energy balance method and 

related governing equations, the Frozen Sonic Flow Method (FSFM) is treated in Sect. III.B (where the related 

underlying hypotheses are critically discussed together with the necessary pre-requisites for applicability; 

however, no assumptions are made at this stage on the nature of the gas). The general foundations of our 

theoretical treatment of polyatomic gases are laid in the following section (Sect. III.C) through a precise 

hierarchy of balance equations (in terms of gas moles) for the different species present in the initial (reference) 

and dissociated states. This modus operandi finally leads to generalized formulas (with respect to those 

originally introduced by Vincenti and Kruger [23]) for the compressibility factor and isentropic exponent (γ) 

required for the application of the FSFM. Other experimental methods to be used for an evaluation of the 

centerline enthalpy are dealt with in Sect. III.D. These methods are the Heating Rate Method (HRM) and the 
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Calorimetric Probe Method (CPM). As the reader may have realized at this stage, these methods are used to 

obtain independent measurements used to demonstrate the reliability and accuracy of the overall approach (cross 

comparison of all these values naturally leads to reciprocal validation of alternate strategies for the derivation of 

the enthalpy). All the results are finally used to populate Sect. IV, where, in order to improve the manuscript 

readability, the findings obtained with different methods are combined in a series of representative plots. As 

discussed in more detail in the conclusions section, the final outcome is a generalized theoretical-experimental 

framework incorporating the capacity to deal with an extended set of circumstances.  

 

II. Experimental Apparatus (Facilities and Instruments) 

 
The hardware used for the effective experiment executions and related measurements can shortly be described 

as follows:  

 

A. The Small Planetary Entry Simulator 

 
The test campaign has been based on the arc-jet facility SPES (Small Planetary Entry Simulator) Esposito and 

Aponte [22] (Fig.1a). The SPES is a continuous, open circuit arc-driven facility. In a continuous wind tunnel 

like this the gas flow is processed with no practical limitations on the run time; this characteristic of the SPES 

(its main components being shown in Fig.1b) may be regarded as a distinguishing mark with respect to other 

categories of devices such as intermittent wind tunnels where the gas flow is produced by rapid discharge of a 

high-pressure storage tank or suction from an evacuated reservoir (in these cases the run time is limited by the 

considered tank or reservoir capacity) : 

1. Gas feeding system (typical total mass flow rates are between 0,5 and 1 g/s) 

2. Electric arc-heater (industrial plasma torch, Sulzer-Metco 9-MB, with arc swirl stabilization), operating 

with pure inert gases (normally nitrogen but also argon, helium and their mixtures can be used) at 

maximum power of 60 [kW] 

3. Mixing chamber (swirl mixer) where cold gases (oxygen, carbon dioxide and others) can be added to 

the plasma gas to create gas mixtures 

4. Conical nozzles with different area ratios (4, 20, 56) for operations in supersonic and hypersonic 

regimes (the nominal values of the Mach number corresponding to such ratios for being 2.94, 

4.72 and 6.05, respectively; Flow Run Time for SPES being ‘continuous’, as explained above). 

5. Cylindrical test chamber  
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6. Diffuser comprising 3 stages or parts 

7. Heat exchanger  

8. Vacuum system (capable of minimum pressure of 50 [Pa] in the test chamber) 

9. Exhaust (open air, after gas purification) 

 

 

 

     a) 

 

b) 

  

Figure 1. Small Planetary Entry Simulator (SPES): (a) overall picture, (b) layout 

 

B. Instrumentation 

 
The feeding gas mass flow rates have been measured by thermal mass flow-meters while the nozzle and torch 

cooling water flow rates have been measured by variable-area flow-meters. Arc-heater Electrical parameters 

have been measured by digital instruments with data acquisition relying on a dedicated digital system able to 

measure and store the thermocouple temperatures located all along the components. Pressure measurements 
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have been made by absolute transducers calibrated by a capacitive vacuum gauge. The uncertainty on the 

measured pressures (vacuum capacitive transducers), temperatures (thermocouples) and mass flow rates (mass 

flow meters) was 2-5%, 7-10%, 3-5%, respectively. 

 

 

III. Methods 

 

A. Averaged Total Enthalpy Measurement 

 
In our experiments, the bulk enthalpy (Hne) has been determined at three different positions along the SPES 

(Refer to Fig. 1) by the so-called energy balance method (see, e.g., Pope [15]).  

In particular, the measured enthalpies have been calculated as average values resulting from different energy 

contributors at each position, as illustrated in the following:  

 

 i) The enthalpy of the gas leaving the arc-heater and entering the mixer: 

 

2 ah

,

- ( )H O
ah

g ah

P m C T
H

m


           (1) 

(evaluated by subtracting the losses due to the cooling water to the input electric power and assuming C=4186 

[J/kgK], the reader being referred to the nomenclature for the meaning of symbols)        

 

 ii) The enthalpy of the gas leaving the mixer and entering the nozzle: 

 

ah ah 2 mc

,

H m - ( )H O
mc

g t

m C T
H

m


           (2) 

   

iii) The enthalpy of the flow at the nozzle exit: 

 

2 e

,

( )
- H O n

ne mc
g t

m C T
H H

m


           (3) 

 

During each test the following pressures have been measured by electronic vacuum transducers: 
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 pt , at the mixing chamber exit 

 pne , at the nozzle exit 

 pts , at the test section 

 p02 , impact pressure at the stream centerline. 

 

The uncertainty on the measured total enthalpy Hne was in the range between ±10% and ±20% depending on arc 

power level, while the overall repeatability of the SPES for the present tests was  95% (according to our 

experience, such repeatability decreases as some specific parts of the arc-heater are consumed). 

 

B. The Frozen Sonic Flow Method (FSFM) 

 
As stated in the introduction, the method of primary interest to be used in determining the total enthalpy  is the 

so-called FSFM. This method was originally introduced for flows that, starting from the sonic point of the 

supersonic nozzle (refer again to Fig. 1), can be represented by a one-dimensional, isentropic expansion in 

equilibrium conditions. Jorgensen [14] extended it to the case in which flows that are in equilibrium through a 

reservoir up to the beginning of expansion, suddenly freeze at that point (in line with widespread consensus in 

the literature that if the pressure is sufficiently small, the flow can be assumed to freeze quickly once it departs 

from equilibrium, Cheng and Lee [25]). Following Jorgensen [14], the equation for frozen expansion, allowing 

the evaluation of total temperature (Tt) at the beginning of the expansion, simply reads: 

 

mg/ptA
*=CF(γ)/(ZTt)

1/2          (4) 

            

where mg and pt   are measured during the test, A* is the sonic section and Z is the so-called compressibility 

factor; moreover,   

 

C = m0 / R0             (5) 

 

F(γ) = [(2/+1) (+1) / (-1)]1/2          (6) 

 

where γ is the isentropic exponent. In principle, this parameter must be evaluated for a chemically frozen 

mixture of atomic, diatomic and polyatomic species, with frozen vibrational energy using the chemical gas 
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composition (ci) determined by the knowledge of enthalpy and pressure at the arc-heater exit. In reality, this 

specific stage is not as straightforward as one would imagine and requires additional details and explanations. 

In practice, in order to apply the FSF method, the thermo-chemical state of the gas must be evaluated at certain 

important sections along the arc-jet process, namely, (a) at the arc-heater exit; (b) at mixing chamber, just 

downstream the cold gas injection point; (c) at the nozzle exit.  

In particular, the following three subsequent steps have to be implemented:  

1) From the energy-balance measurements illustrated in Sect. III.A, the bulk enthalpies Hah, Hmc, Hne at the 

stations (a), (b) and (c) are determined.  

2) Owing to the small value of the arc-heater pressure (3.0 x 104 [Pa] in the present work), the gas flow at the 

arc-heater exit can be assumed to be in thermo-chemical equilibrium (Brown [26]); measuring the pressure and 

knowing Hah, the gas temperature and chemical composition can be determined using the data reported by Gross 

et al. [27] (see their Figs. 58 and 68, which provide the temperature vs enthalpy, and the concentration of atomic 

nitrogen vs the temperature, respectively). 

3) The chemical composition in the mixer chamber, just downstream the cold gas injection point (i.e. the 

freezing point) is evaluated by means of the on-line CEA code from NASA (Sanford and McBride [28]), using 

the Nitrogen plasma coming from the torch and the cold gas injected into the mixer as starting data. This 

procedure assumes that chemical reactions occur instantaneously within an adiabatic process. Once the 

composition of the gas is computed by CEA, we then calculate the compressibility factor Z and the specific heat 

ratio  (further details being given in Sect. III.C) and the total temperature Tt (via eq. (4)). 

Once Tt is known, using the chemical composition derived from the JANAF thermo-chemical data (Stull et al. 

[29]; see also www.kinetics.nist.gov/janaf/), the centerline enthalpy can finally be calculated as:  

 

HCL=Σci (HT+ΔHf,T)i          (7)

           

To simplify the data reduction, in general, the values of (HT+ΔHf,T)i are correlated in terms of temperature, i.e.:  

 

(HT+ΔHf,T)i=B1T+B2          (8) 
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It is hardly worth noting that among the JANAF curves related to the chemical species used in the present FSF 

method, only CO and CO2 species have a negative term (HT + ΔHf,T) for almost temperatures as shown in Fig. 

2. 

  

 
 

Figure 2. JANAF (1998 edition) curves for CO and CO2 

 

 

C.  Extending the Vincenti and Kruger Formula 

 
As we have illustrated in the preceding section, the frozen sonic flow method largely relies on the so-called 

compressibility factor and the corresponding value of  (namely the ratio of the specific heat coefficients at 

constant pressure and volume). In this section, we therefore lay the foundations of a possible extension of the 

approach originally elaborated by Vincenti and Kruger [23] to the case of a mixture of partially (or completely) 

dissociated gases.  

Vincenti and Kruger [23] developed a specific mathematical model under the assumption that, after the 

dissociation process, the gas composition is fixed at same value and the vibrational degree of freedom is frozen. 

Still retaining the same assumptions, we target an extension of such model to the more general situation in 

which the mixture of gases before the dissociation process also includes polyatomic species (a mixture of N2 and 

CO2 or CH4) and species of such a kind are even present in the dissociated state, e.g. HCN (in [23], the 

theoretical framework was limited to the case of initial diatomic and symmetrical gases only, namely, O2 and N2, 

i.e. the main components of air). Along these lines, we start from the simple remark that the simple expression 

for the compressibility factor  
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1VKZ              (9) 

 

determined by these authors (and extensively used by many researchers, where  is the mass fraction of 

dissociated gas, see, e.g., Pope [15]), should not be used when polyatomic species are involved as it heavily 

relies on the aforementioned assumptions in terms of gas molecular structure. Therefore, we develop our revised 

approach on the basis of the original definition of the compressibility factor, which, as reported in Vincenti and 

Kruger [23], can formally be expressed as   

 

0

n
Z

n
             (10) 

 

where n represents the total number of moles in the dissociated gas mixture while 0n  accounts for the 

corresponding number in the initial (non-dissociated) state. In the following, in particular, we denote the number 

of moles of diatomic and polyatomic species present in the initial state by 0
dn  and 0

pn , respectively: 

 

0 0 0
d pn n n             (11) 

 

Starting from these premises, and following the same strategy implemented by Vincenti and Kruger [23], a 

relevant framework for the determination of the quantity  can be built by defining proper balance equations (in 

terms of gas moles) for the different species present in the initial (reference) and dissociated states.  

The first logical step in this modelling hierarchy obviously relates to considering the monoatomic species 

present in the final dissociated state. Due to the dissociation of diatomic species, in the final state there will be a 

number of moles of monoatomic species  02 A
d dn n  where A

dn  is the number of moles of diatomic species 

which have survived the dissociation process. In our case, however, also the polyatomic species can give rise to 

some monoatomic species; for this reason, there will also be a contribution  0
p pn n   where  is the number 

of atoms produced by the dissociation of each polyatomic molecule. The balance equation for the monoatomic 

species ( mn ) can therefore be formulated as 
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   0 02 A
d d p p mn n n n n n       (balance for the monoatomic species)    (12) 

 

where  is the number of atoms contributing to the formation of new polyatomic species (e.g., HNC for the case 

of CH4) in the final state (and n accounts for the related number of moles). 

Accordingly, the number of moles in the final state for the diatomic species will read: 

 

A B
d d dn n n             (13) 

 

where the A superscript represents diatomic gas in the final state due to diatomic gas present in the initial state, 

which has not undergone dissociation and the B superscript represents diatomic gas originating from the 

dissociation of polyatomic gas (we assume that each molecule of polyatomic gas can give rise to one molecule 

only of diatomic gas, which is indeed the case of both CO2 and CH4), i.e. 

 

0B
d p pn n n   (balance for dissociation of polyatomic species)      (14) 

 

From a global point of view, moreover, the following balance equations shall also be satisfied: 

 

m d pn n n n n     (global balance)         (15) 

 

We assume  

2

4

1

3

for CO

for CH



 


          (16) 

 

This assumption being justified by the observation that  CO2 simply dissociates in CO and O, while each 

molecule of CH4 gives rise to a molecule of H2, two atoms of H and one atom of C. Moreover, 

 

2

4

0

3

for CO

for CH



 


          (17) 
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as no polyatomic specie is formed when a mixture of N2 and CO2 is considered, whereas a mixture of N2 and 

CH4 can give rise to a significant percentage of HCN. 

 

Expressing all quantities as a function of dn  and 0
dn  leads to: 

 

0 B
p p dn n n             (18a) 

 02 A B
m d d dn n n n n              (18b) 

  0 0A B B A
m d d p d d pn n n n n n n n n n n                  (18c) 

 

Imposing that the right-hand side of eq. (18b) and (18c) are equal, one gets: 

 

 0 02 1B A
d d d pn n n n n n               (19) 

 

Expressing all quantities as a function of pn , after some manipulations, the system of independent equations 

can also be rewritten as 

 

0B
d p pn n n             (20a) 

   0 02 1 1A
d d p pn n n n n n                (20b) 

   0 02 2 2 2m p p dn n n n n n                (20c) 

 

      0 02 1 2 1A B
d d d d p pn n n n n n n n                 (20d) 

 

Introducing 
0

0

p

d

n

n
    

0
0

(1 )d

n
n





,  

0
0

(1 )p

n
n







 and taking into account that 0n Zn , Eqs. 

(20) become: 
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   0 02 2
2 2

(1 )m pn Zn n n n
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 


 
    


       (21) 

 

     0 02 2
1 1

(1 )d pn n Zn n n
 

 


 
     


      (22) 

 

Recalling that (assuming the vibrational degree of freedom to be frozen) the specific heat at constant volume 

and constant pressure reads: 

 

 3 5ˆ 3
2 2v m d pC R n n n n
      

        (23a) 

 

0p v gas vC C R C ZR             (23b) 

 

Substituting eqs .(21) and (22) into eq. (23a), one gets 
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C R n n n

 
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                        

     (24) 

 

Introducing the molar fractions as * p
p

n
n

n
  * * 0

p p pn n n n Zn   and * n
n

n


   * * 0n n n n Zn    , the 

constant  can be expressed as: 
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       (25) 
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Moreover, recalling that 
0

0

p

d

n

n
  , the following relationships can be readily obtained:  

 
0 0

*0
0 0 0 1
p p

p
p d

n n
n

n n n




  
 

          (26a) 

 

 
 
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*01

p
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n

n
 


           (26b) 

 

 and    *02 2
2

(1 ) pn
 




          
        (26c) 

 

and  can finally be re-cast in compact form as: 

 

3 4

4

Z

Z




 


 
           (27a) 

 

   
*0 * * *2 5 2p p pn n Z n Z n Z         

       (27b) 

 

where  *0
pn is the molar fraction of the polyatomic species (e.g. CO2 or CH4 depending on the considered 

mixture) in the reference state (initial conditions with completely combined gas) and *
pn the corresponding 

molar fraction in the equilibrium state; moreover, *n account for the molar fraction of the new polyatomic 

species formed by monoatomic species (HNC).  

As the reader will readily verify, for an initial mixture formed by diatomic gases only (  *0 * * 0p pn n     

=0), the above formula reduces to the classical expression elaborated by Vincenti and Kruger [23], i.e. 

 

3 4

4VK

Z

Z
 




           (28) 
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D. Centerline Total Enthalpy Measurements 

 
Having finished the description of the modelling hierarchy used to extend the original Vincenti and Kruger’s 

expressions to the case of initial mixtures of N2 and CO2 or CH4 (which should be regarded as the necessary 

theoretical foundation for a well-posed application of the frozen sonic flow method to these mixtures), we now 

turn to discussing alternate techniques, which can be used to obtain independent estimates of the centerline 

enthalpy.  

 

1. Heating Rate Method (HRM) 

 

With the so-called Heating Rate Method (HRM), the stream enthalpy can be determined from measurements of 

the heating rate and pressure at the stagnation point of a blunt model placed at the stream centerline in the 

framework of the Goulard-Pope theory. Indeed, this method has its root in the studies by Goulard [30], who 

considered the stagnation-region convective heat transfer in chemically frozen boundary layers (a situation very 

akin to that established inside the SPES). For a hemispherical or near-hemispherical nose, the ratio of the 

heating rate at a partially catalytic surface to the heating rate at a fully catalytic surface is (Pope [31]): 
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with   
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    (29b) 

 

(for the meaning of symbols and related units, see the related list, the constant K can be evaluated as K = 0.0323 

+ 0.00233 m0 where m0 is the molecular mass of the un-dissociated gas, Sutton and Graves [32]). As the reader 
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will easily realize, application of eq. (29) requires availability of some quantities ( e , eZ , e , wk , wT  , eT ,
e



 ), 

which, in practice, are still evaluated in the framework of the FSFM method presented in Sect. III.B, while the 

Lewis and Schmidt numbers can be assumed to be of unit order of magnitude (in particular, following Pope [31], 

we have used Le=0.9 and Sc=0.5, respectively). Also, wT  was set to 400 [K] for all tests.      

For kw = ∞ (fully catalytic surface), eq. (29) reduces to the well-known Zoby formula (Zoby [33]): 

 

02
fc cl

p
q KH

R
           (30) 

 

For kw = 0 (non-catalytic surface), eq. (29) reduces to:  
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          (31) 

 

The precise assessment of the catalytic gas-surface interaction is generally regarded as very complex issue. 

Proper understanding of this phenomenon calls for very complex modelling at the molecular level, which can 

only be partly validated in ground-based plasmatron facilities (Garcia et al. [34]). As in the absence of 

experimental data (no information available for the specific gas mixtures considered in the present work), the 

use of models is the only possible alternative, here the values of the constant kw for each gas mixture are 

determined using the formula based on the Maxwellian velocity distribution. Though this formula does not take 

into account concentration gradients due to catalysis, it has enjoyed a widespread use in the literature because it 

aligns with Goulard’s main assumption of a frozen boundary layer (Goulard [30]; Cheung	et al. [35,36]):  

 

0

02
w

w w

R T
k

m



              (32) 

 

where w is the catalytic efficiency (i.e. the fraction of atoms that recombine upon striking the wall),   and Tw the 

wall temperature (400 K). For the case of copper, relevant information on the recombination of hydrogen can be 
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found in the paper by Wood and Wise [37], while a big amount of data relating to nitrogen, oxygen and air has 

been summarized in [35,36]. As pure copper is nearly fully catalytic in all cases (see Table 1 in [36] and Table I 

in [37]), we assume w = 0.1 for all gas mixtures; to ensure this condition, at each heat-flux shot the surface 

calorimeter was cleaned by ethyl alcohol. The corresponding values of kw are 13.75 for pure N2, 13.51 for N2 - 

O2, 12.82 for N2 - CO2, 14.41 for N2 - CH4. 

Heat fluxes were measured by a hemispherical probe, 9.2 mm ext. dia, equipped with a slug sensor having a full 

scale of 2x104 kW/m2; the impact pressure at the stream centerline, p02, was measured using a water-cooled, 

stainless steel Pitot probe having the same nose geometry of the heat flux probe, connected to a capacitive 

absolute pressure transducer. 

 

2. Calorimetric Probe Method (CPM) 

 

With this alternate method, the centerline stream enthalpy is evaluated directly using a calorimetric probe as 

shown in Fig. 3; the complete probe assembly is composed of a water-cooled-stainless steel probe, a closed loop 

cooling water circuit, a gas sampling line, and a data acquisition and control unit. 

 
 

Figure 3: Total enthalpy probe: a) Sketch, b) picture. 

 

 
Each measurement was accomplished in two successive steps; the first step is a ‘tare’ measurement of the heat 

load to the probe in the absence of gas flow through the probe. The second is a measurement of the heat load 

under ‘flow’ conditions (suction of a small amount of gas through the probe). By means of a combined energy 

balance, accounting for the cooling water flow through the probe and the gas sample extracted from the plasma, 

the local specific enthalpy at the probe tip can be calculated on the basis of a simple equation (Grey [38]), 

namely: 
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   2 2 2 2 2 2H O H O H O H O H O H Oflow tare
cl g g

g

m Cp T m Cp T
H Cp T

m

  
       (33) 

 

where (TH2O)flow and (TH2O)tare are the cooling water temperature jumps during tare and flow phases, mH2O is 

the water mass flow rate, CpH2O is the water specific heat, Cpg and Tg are the specific heat and temperature of 

the gas at the probe exit; moreover 

 

 0 0( ) * /gm F p A RT          (34) 

 

is the extracted gas sample, where F() comes from Eq.(6), po and To are the pressure and temperature upstream 

the throat of sonic nozzle, A* is the throat area and R is the gas constant. 

It is possible to define a sensitivity factor, to relate the heat transferred from the plasma to the probe-cooling 

water via the following equation: 
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If a too low gas quantity is sampled, (TH2O)flow will be very small compared to (TH2O)tare, leading to a large 

uncertainty for the measured enthalpy. On the contrary, if a too large gas quantity is sampled, the flow will be 

very disturbed near the probe tip, leading to large errors on the measured enthalpy. We assumed that this factor 

had to be greater than 5% to achieve an acceptable accuracy of thermocouples (in other words, this means 

making sure that supply of heat from the gas sampling is sufficient in comparison to the total heat transfer to the 

probe). 

The used probe was AISI 316 stainless-steel made with a tip curved to right angle to protect the remaining probe 

parts from the hot gas, outer diameter 4 mm, and diameter of the sampling tube 1.2 mm.   
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IV. Results and Discussion 

 

A. Pure Nitrogen: Effect of Different Factors on the Centerline Enthalpy Peaking 

 
As explained to a certain extent in the introduction, the ratio of the center-line to bulk enthalpy can display 

sensitivity to different factors, some of geometrical nature, other of fluid-dynamic nature, which can make this 

ratio very dependent on the specific situation considered (thereby hindering investigators’ efforts to make their 

results general and widely applicable to different situations). For this reason, we deemed it necessary to conduct 

a preliminary study aimed to determine quantitatively the impact of such factors on the quantity of interest, i.e. 

the Hcl/HN ratio determined with the Frozen Sonic Flow Method.  

For simplicity (to filter out the effect of other parameters), we have concentrated on the case of pure nitrogen as 

plasma gas, as reported in detail in the following.     

 

 
Figure 4. Hcl/HN  ratio for different torch nozzles (GE, G, 730) 

 
a) physical geometry of the heater: in our heater (industrial plasma torch, Sulzer-Metco 9-MB, with arc swirl 

stabilization), the only allowed geometry variations are those obtainable by varying the anode (nozzle); we used 

three nozzles suitable for nitrogen, called 730, GE and G respectively (all nozzle types have a convergent 

section followed by a short cylindrical section, but only the 730 type ends with a slightly divergent section). The 

Hcl/HN ratio is shown in Fig. 4 as function of the bulk enthalpy HN using the three aforementioned torch nozzles 
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for two distinct mass flow rates (0.5 and 0.8 g/s respectively); as the reader will easily realize by inspecting this 

figure, the ratio is almost constant.  

 

 
b) geometry of mixing chamber: the mixing chamber geometry is cylindrical (22 mm dia) but two length are 

possible, 46 and 103.7 mm, leading to L/D = 2.09 – 2.95 - 4.71 (the reader being referred to Figure 5 for the 

outcomes of the related tests). 

 

 

 

 
Figure 5. Hcl/HN  ratio for different L/D ratios, nozzle 730 and mass flow rate = 0.5 g/s (the insert shows 

Hcl/HN  ratio for different mass flow rates and L/D = 2.09) 

 

 

 
c) gas mass flow rate : the insert in Figure 5 refers to a large  number of tests performed with five Nitrogen mass 

flow rates (0.3 - 0.5 - 0.8 -1 - 1.2 g/s) . The ratio Hcl/HN is practically the same for all tests.  
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Figure 6. Hcl/HN  ratio for different nozzles. 

 
 

d) nozzle configuration: Figure 6 summarizes the results for two different nozzles (area ratio 56 and 4, named 

“A” and “B”, respectively). The ratio Hcl/HN is practically the same for all tests. 

On the basis of these preliminary results, it can, therefore, be concluded that the examined factors have a scarce 

effect on the measured ratio. This result is not completely unexpected. Assuming an experimental setup similar 

to the present one, other investigators came to similar conclusions [15].  

 

B. Centerline Enthalpy by Frozen Sonic Flow Method 

 
All the findings described in this section have been obtained using the following configuration for SPES: Arc-

heater: nozzle 730, Mixing Chamber: L/D = 2.09, Supersonic Nozzle, A/ A* = 2.94, exit nozzle diameter: 22 

(mm). 

 

1. Pure Nitrogen and Air (reference Cases) 

 
In this section we concentrate on the very classical case represented by a mixture of nitrogen and oxygen, 

namely, air. As in this case both component gases satisfy the original assumptions on which the Vincenti and 

Kruger’s formula is based (initial diatomic and symmetrical gases only), the application of the FSFM approach 
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reduces to its standard implementation (Z and  computed according to eqs. (9) and (28), respectively). The 

related results are summarized in Figs. 7-9.  

 

 
Figure 7 : Pure Nitrogen 

 
More precisely, while Fig. 7 still referes to the case of pure nitrogen (showing how the related Z and  

parameters change as a function of the centerlien enthalpy, Fig. 8 illustrates the variation of the same quantities 

for the case of air, thereby giving insights into the effect produced by the addition of oxygen.    

 
Figure 8. Air (Nitrogen-Oxygen Mixture) 



Accepted for publication in the AIAA Journal on 14th August 2019 
 

26 
 

 

 
Figure 9. Pure Nitrogen – Air (nitrogen-oxygen mixture) 

 
Figure 9 shows for both cases of pure nitrogen and air the variation of the centerline enthalpy as a function of 

the total enthalpy. It can be seen that while for relatively small values of the total enthalpy (HN<20 MJ/Kg) the 

scattered points are quite well aligned along a line with constant inclination (regardless of whether they relate to 

pure nitrogen or air), some appreciable difference can be spotted according to the considered gas or mixture 

when this threshold is exceeded.  

 

2. Nitrogen-Carbon Dioxide Mixture 

 
The presence of Carbon Dioxide in the mixture formally invalidates eqs. (9) and (28), which have to be replaced 

with the corresponding corrected (expanded) versions, represented by eqs. (10) and (27), respectively. 

Interestingly, the results summarized in Fig. 10 indicate that the differences between the values obtained with 

the correct version of the expressions of Z and  and those obtained pretending that the considered gases are 

diatomic and symmetric (ZVK and VK) are relatively limited. More precisely, ZVK and VK slightly overestimate 

the corresponding values yielded by eqs. (10) and (27), respectively. This trend is reverted when the ratio 

Hcl/HN is considered (Fig. 10c).  

This scenario can easily be interpreted considering the nature of the CO2 molecule, which by simply dissociating 

in CO and O, can cause a limited departure from the idealized behavior originally theorized by Vincenti and 

Kruger [23] (formalized by eqs. (9) and (28)).      
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a) 

 

 

b) 
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c) 
 
Figure 10. Nitrogen-Carbon Dioxide Mixture: a) Z as a function of centerline enthalpy, b)  as a function 

of centerline enthalpy, c) Hcl/HN as a function of centerline enthalpy. 

 

 

 

3. Nitrogen-Methane Mixture 

 
The same descriptive approach undertaken in Sect. IV.B.2 is replicated in this section by replacing the carbon 

dioxide with methane (i.e. a mixture of N2 and CH4), see Fig. 11. 

 

 
It can be seen now that the differences between the results provided by the corrected formulas and those valid 

for diatomic and symmetric gases become significant. While Z computed with eq. (9) varies (approximately) in 

the range 1.2<ZVK<1.4, the corresponding value yielded by eq. (10) spans the interval 1.6<Z<2.5. Similarly for 

the isentropic exponent, the related intervals are (approximately) 1.45<VK<1.55 and, 1.6<<1.8 respectively.  
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a) 

 

 

 

b) 
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c) 
 

Figure 11: Nitrogen-Methane Mixture: a) Z as a function of centerline enthalpy, b)  as a function of 
centerline enthalpy, c) Hcl/HN as a function of centerline enthalpy. 

 

 
These significant changes can obviously be ascribed to the much more involved situation that is established 

when methane is considered. When its molecule dissociates in the presence of atomic nitrogen, it leads to the 

formation of new tri-atomic species, which persist in the final state. The interplay of diatomic and monoatomic 

species and their evolution through the dissociation stage is also much more complex than that occurring for a 

mixture of nitrogen and carbon dioxide.     

 

C. Centerline Enthalpy by Heating Rate Method  

 
Toward the ultimate goal of using the FSFM approach to address the challenges described in the introduction, it 

is extremely important that it is validated and verified. Given the intrinsically complex nature of the considered 

problems, in particular, we have implemented such a process via two distinct stages of verification. As shown in 

the following, first we will compare the results obtained with the FSFM with the independent values yielded by 

the Heating Rate Method (present section) and then try to gain further confidence in the validity of the approach 

resorting to the Calorimetric Probe Method (Sect. IV.D).  

Obviously, critical information about the reliability of the overall theoretical-experimental framework is sought 

from consideration of the four different archetypal situations examined so far (namely, pure nitrogen, air, 

nitrogen-carbon dioxide and nitrogen-methane mixtures). 
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Figure 12. the probes used to apply the Heating Rate Method 

 

The probes used to apply the Heating Rate Method are shown in Fig. 12. 

 

1. Pure Nitrogen and Air (Reference Cases) 

 

 

 
 

Figure 13. Comparison of centerline enthalpy determined with the FSFM and HRM methods. 
 

 
As evident in Fig. 13, the agreement in the case of pure nitrogen is excellent, whereas some appreciable 

departure of the experimental points from the ideal HHR=HFSFM straight line can be seen for the case of air. We 
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ascribe the later effect to a possible uncertainty in the estimated catalicity (the kw constant appearing in Sect. 

III.D.1) of the body surface and/or in the chemical composition of the mixture after the dissociation process.   

 

2. Nitrogen-Carbon Dioxide Mixture 

 
The very good agreement seen for the case of pure nitrogen is back when the mixture of nitrogen and carbon 

dioxide is considered (Fig. 13).  

 

3. Nitrogen-Methane Mixture  

 
The data in Figure 13 for the case of the N2-CH4 mixture finally conclude the set of scheduled cross 

comparisons between the outcomes of the FSFM and HRM methods. The agreement holds provided the 

enthalpy does not exceed a limiting value of approximately 25 MJ/Kg. Above this threshold a clear departure of 

the experimental points from the ideal straight line can be identified, which we ascribe once again to the 

unavoidable uncertainties in the chemical composition of the mixture and the effective degree of catalysis of the 

involved surfaces required for the correct application of the method described in Sect. III.D.1. 

 

Table 1: Comparison between the FSFM, HRM and CPM methods. 

 

Mixture HN FSFM HRM CPM 

N2 19.4 23.9 23.7 26.3 

N2-O2 15.1 20.8 23.5 21.8 

N2-CO2 18.2 21 20.4 22.5 

N2-CH4 17.3 22.9 24.6 24.9 

 

 

D. Centerline Enthalpy by Calorimetric Probe Method 

 
In this section, we finally complement the earlier findings with dedicated measurements performed using the 

Calorimetric Probe Method (Fig. 14). Given the extreme complexity relating to such tests, we concentrate on a 

single (representative) case for each gas mixture, as reported in Table 1: 
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a) 

 

b) c) 

 
Figure 14. Calorimetric Probe Method: a) setup, b) snapshot of the jet, nitrogen-carbon dioxide mixture, 

c) snapshot of the jet, nitrogen-methane mixture. 

 

1. Pure Nitrogen and Air (reference Cases) 

 
As usual, first we consider the two reference cases relating to pure nitrogen and air. As witnessed by the data 

collected in Table 1, the agreement can be considered more than satisfactory. 

The value provided by the CPM (HCPM  = 26.3 MJ/kg) slightly overestimates the values obtained with the FSFM 

and HRM methods in the case of pure nitrogen. For the mixture of nitrogen and oxygen, HCPM takes an 

intermediate value with respect to those yielded by the FSFM and CPM (HCPM  = 21.8 MJ/kg). 

 



Accepted for publication in the AIAA Journal on 14th August 2019 
 

34 
 

2. Nitrogen-Carbon Dioxide Mixture (Gamma from present analysis) 

 
For the mixture of nitrogen and carbon dioxide, the values provided by FSFM and HRM are very similar, with 

the CPM method slightly overestimating the other two results (HCPM  = 22.5 MJ/kg, Table 1). 

 

3. Nitrogen-Methane Mixture (Gamma from present analysis) 

 
The agreement is still good when the most complex case is considered, i.e. the mixture of nitrogen and methane 

(HCPM  = 24.9 MJ/kg). In this case, apparently the FSFM method provides a value that is slightly smaller than 

the values obtained with the HRM and CPM methods. 

We wish to expressly point out at this stage, that the minor differences highlighted so far must obviously be 

ascribed to the unavoidable experimental errors, the limited knowledge about the values to be used for the 

catalysis constant kw related to the HRM method, and, last but not least, the uncertainties relating to the effective 

chemical composition of the mixture after the decomposition process (resulting in 10-15% total uncertainty for 

the CPM and 20-25% for the HRM). 

Leaving aside for a while, the many factors which might have contributed to determine such minor differences, 

there is compelling evidence that the results provided by different methods are in agreement.  

The consistency of the FSFM predictions with experimental data obtained following alternate strategies suggests 

that physics-controlling steps have been taken into account, and that simplifications or assumptions introduced 

in the implementation of all these methods do not distort actual behavior.  

We wish also to recall that, for the case of air, the ratio Hcl/HN is almost equal to that obtained by Park et al. 

[19], which may indicate inherent similarities in the experimental apparatus and setup used by these authors and 

in the present work. Unfortunately, to the best of our knowledge, for the mixtures of nitrogen and carbon-

dioxide or methane, no results exist in the literature with which direct comparison could be considered (which 

provides further rationale to our decision to tackle the problem in the framework of a multi-method approach).  

 

V. Conclusion 

 
The present work should be regarded as quite an exhaustive attempt to help engineers, researchers and 

professionals working in the field of thermal protection systems to discern the complex interrelations among the 

various parameters under one’s control (that are not independent of one another) and to elaborate rational 
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guidelines relating to approaches that can influence the probability of success in measuring reliable values of the 

centerline enthalpy. 

We have shown that different methods and approaches exist, whose nature and variety may implicitly suggest a 

concerted strategy of analysis based on the combination of existing theories on the behavior and evolution of 

gases, the tools of statistical physics, thermodynamics, fluid dynamics, nonlinear dynamics, and mathematical 

modeling in synergy with experimentally oriented work.  

From the experimental point of view, by means of a Small Plasma Entry Simulator (SPES) and using Nitrogen 

(N2) as hot feeding gas, three mixtures have been investigated by adding cold gases - oxygen (O2), carbon 

dioxide (CO2) and methane (CH4) - through a mixer located just upstream the nozzle. The bulk enthalpies have 

been varied in the range between 5 and 30 [MJ/kg]. 

From a theoretical point of view, as in the final states of the N2-CO2 and the N2-CH4 atmospheres linear tri-

atomic molecules, namely CO2 and Hydrogen Cyanide (HCN) are present that can obviously make not 

rigorously applicable the classical formulation of the Frozen Sonic Flow Method, an attempt has been made to 

derive a theoretical formulation of compressibility factor Z and specific heats ratio γ for a mixture of 

monoatomic, diatomic and linear tri-atomic molecules with frozen vibrational energy.  

The results obtained by the FSM modified in such a way have been compared with experimental ones obtained 

in the framework of alternate techniques, namely, the Heating Rate Method, based on measurements of the 

stagnation-point heat flux and impact pressure and relying on the well-assessed Goulard-Pope theory on heat 

transfer on catalytic surfaces, and the Calorimetric Probe Method, based on direct localized measurements of the 

enthalpy. The agreement has been found to be good (with minor differences due to unavoidable experimental 

uncertainties), leading to the following enthalpy ratios (averaged values obtained considering the results of the 

three different methods considered in the present work): Hcl/Hne =1.46 for N2-O2 mixture, Hcl/Hne = 1.17 for N2-

CO2 mixture and Hcl/Hne = 1.39 for N2-CH4 mixture.  

We think that the most important outcomes of the present efforts relate to the clear indication they provide about 

the possibility to overcome typical experimental difficulties (which often hamper physicists’ and engineers’ 

quest to map precisely the response of these systems in the space of parameters) by using a complementary set 

of techniques. Quantities determined with one method can be substituted into the equations or relationships 

governing other methods, which, in turn, can feed back, other information for further iterative refinement of 

them or improvements in the underlying theoretical models (along these lines, as an example, we plan to devote 

other effort in the future to further investigate the idiosyncrasy that apparently affects the results obtained with 
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the HRM method when an enthalpy of 25 MJ/Kg is exceeded). We sincerely hope that the results and ideas 

presented in this work will be collected by other investigators and help them to produce further progress in these 

fields. 
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