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Abstract: Thermal plumes of small scale generated by spatially separated heat sources can form, 
like atoms in a chemical compound, complex structures of different kind and with distinct behaviors. 
The situation becomes even more complex if plumes can interact with imposed vertical shear (a 
horizontal wind).  In this analysis a ‘minimal framework’ based on the application of a filtering 
process to the governing balance equations for mass, momentum and energy (falling under the 
general heading of ‘Large Eddy Simulation’ approach), is used together with Direct Numerical 
Simulation to inquiry about the relative importance of buoyancy and vertical shear effects in 
determining the patterning scenario when highly unsteady dynamics are established (turbulent flow). 
Emerging patterns range from the flow dominated by a static rising jet produced by the aggregation 
of plumes, which are pushed by horizontal leftwards and rightwards winds towards the center of the 
physical domain, to convective systems with disconnected thermal pillars of smaller scale, which 
travel in the same direction of the prevailing wind. The classical sheltering effect, which for flows 
that are steady ‘in mean’ simply consists of an increased deflection of the leading buoyant jet with 
respect to the trailing ones, is taken over by a variety of new phenomena, including (but not limited 
to) fast plume removal-rebirth mechanisms (with local increase in the velocity frequency and 
shrinkage in the related amplitude), ‘bubble’ formation-rupture and local departure of the frequency 
spectrum from the Kolmogorov similarity law. 
 
 
Key words: Plume Dynamics, Cross flow, Jet coalescence, Chaos 
 

1. Introduction 

 

Sets of multiple buoyant plumes interacting with a cross flow are widespread in the natural and 

artificial environment and can be categorized under different perspectives. Common examples in 

nature are volcanic gas eruptions (Valentine and Wohletz1; Kaminski et al.,2) and hydrothermal vent 

flows in the deep ocean. They are also a typical feature of modern society’s fluid waste disposal 

methods as witnessed by the various visible gaseous emissions into the atmosphere from domestic 

and industrial smokestacks (McGrattan et al.,3) and from cooling towers or mobile exhausts. Other 

‘non-visible’ examples are represented by the releases of liquid into coastal water, rivers and lakes 

from a variety of (industrial, municipal and agricultural) sources, mining and oil extraction 

operations (Jirka4; Tomàs et al.,5), chemical reactors and various plants for waste treatment and 

desalination facilities (Oliver et al., 6). Many other variants can be found in the specific field of 
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energy production, where configurations with multiple sources of buoyancy are a characteristic 

feature of thermal discharges from nuclear and fossil-fueled electricity generation plants (Martineau 

et al.,7; Lee and Asce8; Fregni et al.,9). They can also exist at a smaller scale in typical problems 

relating to the cooling of computer mother boards and related CPUs and memories (Sun and 

Jaluria10; Biswas et al.,11) or in combustion chambers as a result of the presence of holes or orifices 

for fuel injection and dilution (Issac and Jakubowski12; Baltasar et al.,13). Similar concepts also 

apply to the manufacturing industry, where gas furnaces are commonly used for the heat treatment 

of metals (Viskanta14). In the built (civil engineering) environment, such phenomena are widespread 

in emergency ventilation and air conditioning systems in buildings (Venkatasubbaiah and Jaluria15; 

Subudhi et al.,16; Morsli et al.,17,18; Harish19) and can be found, in general, in every technological 

situation in which a heat exchanger is required.  

Given the diversity and rich spectrum of circumstances in which multiple buoyant plumes 

interacting with a cross flow can be encountered in nature and the myriad technological applications 

briefly reviewed above, generalizations are rather difficult. Many situations are possible in principle 

depending on the specific case considered, namely, the distribution of buoyancy sources and the 

properties of the ‘external’ flow. 

In the present work we expressly concentrate on circumstances for which such sources have 

essentially a thermal nature (thermal buoyancy). Even with this limitation, however, the subject still 

displays a plethora of variants. The ‘receiving’ ambient can be characterized by its own temperature 

distribution, velocity profile and boundary conditions, which are not ‘unique’. The temperature may 

be constant, display a stable thermal stratification, or even an unstable distribution (leading to the 

onset of massive thermal convection). In terms of velocity, similarly, the ambient fluid may be in 

stagnant conditions or support a laminar (uniform or sheared) flow. In terms of physical 

‘boundaries’, the domain may vary from ‘unbounded’ conditions to a geometry partially or totally 

delimited by solid walls (i.e. an enclosure or cavity). Moreover, the plume dynamics may be steady 

in mean or completely unpredictable.  

These simple arguments explain why the subject has so far resisted a deep and exhaustive analysis. 

Over the years it has been approached for fundamentally different reasons by distinct research 

groups with very different backgrounds. Trying to filter out differences and concentrate on common 

aspects, (and leaving aside for a while the experimental approach, for which the interested reader is 

referred to, e.g., Smith and Mungal20 and references therein and Keramaris and Pechlivanidis21), we 

start from the simple realization that the methods elaborated so far to tackle these problems can 

easily be classified or split into four main general categories, namely: 1) dimensional 

considerations and OMA (order of magnitude analysis); 2) potential (analytic) flow theory; 3) 

integral methods of various types and 4) approaches based on the discretization and solution of the 

governing balance equations for mass, momentum and energy (including mathematical extensions 

to account for turbulent behavior). While dimensional considerations and the ensuing OMA, in 

general, provide useful information on ‘characteristic quantities’ and related functional dependences 

(Wright22; Fischer et al.,23), the other strategies can be used to address other (more subtle) aspects of 
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the considered problem. Among them, the evolution of the trajectories of the plumes (typically a 

topic of great interest in the context of all these studies) and the interaction of initially distinct 

plumes (this being required for accurate prediction of mixing phenomena occurring in the flow, 

which eventually lead to dilution or plume ‘concentration’).  

Purely analytical approaches have also enjoyed a widespread use especially for configurations in 

which a limited number of plumes or jets are present in the physical domain (Jirka and Fong24). In 

this regard, in particular, two developments were worth of attention. Kaye and Linden25 considered 

two plumes and assumed them to be advected towards each other by the induced entrainment 

velocity computed by a potential flow theory. Later Lai and Lee26,27 have proposed a general semi-

analytical model for the dynamic interaction of multiple buoyant jets (in stagnant ambient 

conditions) based on a distribution of point sinks and doublets along the jet trajectory with the 

interaction being assumed to be governed by the inviscid external flow produced by the jet group. 

With such strategy, the trajectories were determined via the iterative solution of an integral buoyant 

jet model and by tracking the changes in the external entrainment flow and dynamic pressure fields 

(the velocity and concentration fields of the jet group being finally obtained by applying a 

momentum or kinetic energy superposition principle valid in the limit of potential flow). 

For what concerns the integral methods, a large cross section of fundamental research in this field 

for non-stagnant ambient conditions (i.e. in the presence of a cross flow) can be found in the book 

by Lee and Chu28, and in Jirka4 and Lee and Asce8 (the reader being also referred to Isaac and 

Schetz29). A number of them have been developed in a Lagrangian framework in which the generic 

plume or jet fluid element is assumed to be transported with a given average local velocity along the 

trajectory (Frick30; Lee and Cheung31) and to undergo during this process a series of transformative 

events.  

The intimate essence of this strategy can be illustrated as follows. From a practical point of view, it 

is based on the paradigm of a series of different stages. First, the governing equations of motion and 

turbulent transport (Reynolds averaged equations) are ‘integrated’ in a local coordinate system (this 

leads to a system of conservation equations for different flux quantities). Second, the progressive 

expansion of the turbulent zone is described through a ‘spreading’ equation (Wood et al.,32; Chu 

and Lee,33; Chu et al.,34) or through an entrainment model (ambient fluid from the surrounding 

environment is drawn into the jet through a mechanism of turbulent nature; Morton et al.,35).  

All the valuable models (and related findings) described above are applicable to cases in which the 

flow is steady in mean, i.e. when the ratio of turbulent fluctuations to time-averaged quantities is 

relatively small (in these circumstances, the plume trajectories do not depend on time, i.e. the 

resulting pattern can be taken to be ‘steady’ in the time-averaged space).  

Though the theory for steady-in-mean flows has emerged as a leading candidate to analyze these 

subjects, other works of relevance to the problem also include those where attempts were made to 

approach it by averaging with respect to ‘space’, i.e. replacing the discrete set of buoyancy sources 

with a continuous production of heat along the wall where the heat sources are located. With this 

strategy it becomes possible to get meaningful information on the convective hybrid regime 
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produced by thermal buoyancy and the forced (horizontal) convection (due to a uniform cross flow) 

using the so-called boundary layer approximation (Sparrow and Minkowycz36; Hauptmann37; 

Hieber38; Hussain39). 

Whereas all these theoretical models or existing approaches can be organized in well-studied 

universality classes, unfortunately, the interpretation of experimental realizations is relatively 

difficult. This is due to the inherent complexity of these flows, which often hide a still-not-fully-

understood competition of diverse physical mechanisms that determine macroscopic dynamics.  

Moreover, all the models discussed above, relying implicitly on the possibility to turn the initial 

problem into an alternate one in which all the quantities of interest are replaced by the 

corresponding time-averaged or space-averaged ones, are not applicable when the system enters a 

peculiar state of turbulence in which the plumes display very unsteady dynamics.  

In the present analysis we target expressly such a regime for which there seems to be a significant 

lack of results in the literature. Our work also proposes widening the range of methodologies used 

to examine these problems (by including concepts, methods and tools, which are typical of the 

analysis of chaotic systems). 

 

2 Mathematical Model and Numerical Method 

 

2.1 The considered system 

 

We concentrate on “line thermals” in cross flow, i.e. the motion produced by a line (assumed to be 

infinitely extended along a direction perpendicular the plane of the cross flow) of buoyant fluid. 

More precisely we consider conditions for which the dynamics are completely dominated by plume 

unsteady creation/surface-detachment and ensuing interaction and mixing phenomena, for which 

the resulting pattern is expected to share many features with that typical of purely turbulent 

Rayleigh-Bénard (RB) convection, including its prevailing two-dimensional nature (Refs [40-45]). 

Due to its disorganized appearance, this convective regime has so far resisted a deeper analysis, and 

its behavior has often been placed in the category fully developed thermal turbulence. 

The considered configuration is shown in Fig. 1. It consists of a rectangular physical domain limited 

from below by a solid wall featuring a distribution of N equally spaced heated elements (finite-size 

buoyancy sources). These solid bodies are assumed to have square shape (i.e. they may be regarded 

as bars with square cross-section) and uniform temperature, while the underlying floor is adiabatic. 

A linear velocity profile is imposed at the left side of the domain to simulate the presence of a wind 

interacting with the considered distribution of hot elements. The other (right and top) sides are 

treated dynamically as ‘open boundaries’. This means that the thermal plumes generated by the set 

of heat sources periodically positioned along the horizontal direction can leave the system through 

the upper or the right boundary depending on the prevailing effect (be it buoyancy or forced 

convection induced by the horizontal wind, respectively, we will come back to these important 

concepts later). We denote by d and l the generic size of each square obstacle and the distance 
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between two consecutive elements of the array (accordingly, a related non-dimensional parameter is 

defined as =l/d). By indicating with H vertical extension of the fluid domain, other characteristic 

geometrical parameters are introduced as =d/H (nondimensional size of the generic finite-size 

heated item) and L/H (nondimensional horizontal extension of the computational domain). As 

shown in Fig. 1, the overall length L can be expressed as [l0+Nd+(N-1)l+l0] where l0 is the 

minimum allowed distance between one of the vertical (left or right) boundaries and the nearest 

square heat source of the succession.  

 

 

 
 
Figure 1: Sketch of the considered problem: an array of evenly distributed heated protuberances 
with square shape and side d is located at the bottom of a physical domain (solid and dashed lines 
indicate solid and free boundaries, respectively); the distance l separating a square element from the 
next one in the downstream direction is constant.   

 

 

For brevity we confine our attention to a fixed value of the heated body side, namely, =1/12. 

Moreover, the number of heat sources N of the array is set to N=10 (l0=1). However, important 

degrees of freedom are introduced in the analysis by changing the spacing parameter  (=1, 2 and 

3) and allowing the characteristic flow numbers (these being the so-called Reynolds and Rayleigh 

numbers, for forced and buoyancy convection, respectively), to span relatively wide ranges (the 

reader being referred to Sect. 2.3 for a proper definition of these characteristic parameters and 

detailed information about the considered intervals).  

As we will show in detail in Sect. 4, the use of surrogate models like that shown in Fig. 1 allows 

more efficient exploration of the space of parameter and can support a multifaceted spectrum of 

different research initiatives. As a concluding remark for this section, we wish also to highlight that 

this configuration complements from a theoretical point of view the equivalent ‘internal flow’ 

problem, namely, the rectangular channel with streamwise-periodic ribs mounted on one of the 

principal walls. This companion subject relating to flows over and around wall-mounted obstacles 
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has attracted significant interest over recent years owing to its important technical and industrial 

applications (related results are useful to improve the designs of the internal surfaces of pipes and a 

variety of heat exchangers, e.g., gas turbine blade cooling passages and serpentine cooling channels, 

advanced gas-cooled nuclear reactor fuel elements, solar collectors and cooling systems for 

electronic devices). There are indeed numerous valuable publications in which ‘flow interruption’ 

created in flow passages at periodic intervals (by means of ribs with various possible shapes) was 

intentionally used to promote turbulence and/or enhance convective heat transfer in ducts and 

channels (these roughness elements can invariably promote flow reversal in the gaps between them 

thereby breaking the laminar sub-layer of the internal flow, see, e.g., Refs [46-52]). This is the 

reason why these elements are also known as “turbulators”. Though we will refer afterwards to 

some of these studies, however, most of them have been limited to isothermal flows or situations in 

which thermal buoyancy is negligible (temperature considered as a ‘passive scalar’), which may be 

regarded as a distinguishing mark with respect to the specific problem considered in the present 

work (where the repeated hot items installed on the horizontal wall play the active role of ‘plume 

generators’).   

 

2.2 Large Eddy Simulation: Principles and Model 

 

When regimes of chaotic hybrid convection are entered, unfortunately, the application of integral 

methods such as those described in the introduction (implicitly relying on the possibility to consider 

the plumes as separate entities even though they are bended as a result of the cross flow) is no 

longer an option. Given the dominant role of plume (and related vortices) coalescence and splitting 

phenomena with respect to simple localized entrainment effects, this also requires some change or 

shift in the most relevant turbulence model to be adopted. 

Simulation of turbulent fluid flows is generally made very complex by the wide range of scales 

typically involved in these problems. Approximations of such flows can be achieved numerically by 

solving directly the unsteady balance equations with an adequate number of grid points, i.e. by 

direct numerical simulation (DNS). Alternative approaches can yet be obtained by filtering the 

equations in time and introducing a closure model for the Reynolds stresses (RANS approaches) or 

filtering the equations in space and introducing an adequate representation for the sub-grid dynamic 

stresses and heat flux (the so-called LES approaches). 

Direct solution (DNS) of the governing partial differential equations (the Navier-Stokes equations 

complemented by the energy equation for the diffusive and convective transport of heat) is very 

demanding (often prohibitive) in terms of computational resources and simulation time required53. 

In practice, the time-averaging approach, where correlation terms (i.e. the Reynolds stresses) are 

modelled, is not always a viable alternative because the physics of the various scales that contribute 

to the correlation terms is not the same (Edison54).  

While RANS have enjoyed a widespread use in the context of integral methods (Ref [4] and 

references therein) and even in circumstances for which the equations have been approached in 
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terms of CFD (cases for which the pattern can be assumed to be steady in mean, see Yu and Li55; 

Ma and Li56; Xiao et al.,57; Harish and Venkatasubbaiah58,59; Tsai et al., 60; Weihing et al., 61; Lou et 

al.,62), for the case of highly unsteady dynamics, LES (Large Eddy Simulation) seems to be a more 

relevant choice, especially when the phenomena of vortex coalescence and splitting become 

pervasive throughout the computational domain. The LES approach has been successfully applied 

to pure thermal convection (Eidson54; Wong and Lilly63; Kimmel and Domaradzki64; Pham et al.,65; 

Yan66; Devenish et al.,67; Pant and Bhattachary68), circumstances involving various kinds of jets in 

cross flow (Morton et al.,69; Li and Wang70; Li and Ma71) and flows (without buoyancy) in ducts 

with “turbulators” (Ciofalo and Collins72; Murataa and Mochizuki73; Cui et al.,74; Lohász et al.,75; 

Labbé76). Though it is not the definite key to the challenge represented by the need to elaborate a 

compact and self-consistent model, sufficiently general to capture with a single numerical treatment 

both the large- and small-scale physics, the large-eddy-simulation technique (LES) can overcome 

some of the above-mentioned bottlenecks, which explains its progressively increasing use over 

recent years. 

The related physical foundation can be found in the generalized idea that turbulence takes a 

universal (repetitive) behavior in space (homogeneous isotropic turbulence) under a certain length 

scale (in the so-called inertial range of space scales). This intuition is due to Kolmogorov77-80. 

In this way, small-scale motion (smaller than the so-called “filter width”), which is known to be 

independent of the boundary conditions, is implicitly removed from the numerical simulation and 

modelled as a function of local flow conditions. Since the correlation terms include only a modelled 

estimate of the average effect of the small scales, the resulting velocity fields (generally referred to 

as the ‘resolved’ one) can therefore be regarded as estimates of the true solutions to the Navier-

Stokes equations51. The study of thermal turbulence is a classical subject for which the LES 

philosophy is particularly useful. Relevant information about the possibility to use the Kolmogorov 

argument for the kinetic energy spectrum in a homogeneous fluid undergoing hybrid (mixed) 

convection can be found, e.g., in the recent theoretical study by Bhattacharjee81. There is some 

general consensus that for turbulence in non-isothermal fluids (with buoyancy) one should take into 

account that, in addition to the kinetic energy, another form of ‘energy’ is present whose density 

scales with the square of the local temperature fluctuations. By calling this the “thermal energy”, by 

analogy with Kolmogorov arguments (Kraichnan82), one may imagine this energy being injected at 

large length scales (of the order of the vertical distance over which a temperature difference is 

maintained) and dissipated at small length scales by the thermal diffusivity. Further pursuing the 

above-mentioned analogy, one may imagine a flux of this thermal energy (the “thermal flux”) 

through the wavenumber scales or length scales. It was shown by Bolgiano83 and independently by 

Obukhov84 that in a stably stratified fluid if the thermal flux dominates the kinetic energy flux, then 

the kinetic energy spectrum becomes E(k) k−11/5 (Bolgiano–Obukhov or BO spectrum). For a 

convectively unstable configuration like that considered in the present study, however, as illustrated 

by Kumar et al.,85 and Bhattacharjee81, due to the dominance of flux of kinetic energy over that of 

thermal energy, Kolmogorov arguments for the scaling of the energy spectrum are still applicable 
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(i.e. E(k) k−5/3), which may be regarded as the necessary theoretical pre-requisite for the 

application of the standard LES philosophy to mixed convection. 

The required quantitative details, which have been glossed over in this section, are put in a proper 

mathematical context in the next subsection through the ideas originally developed by 

Smagorinsky86 and Lilly87 (see also APPENDIX A). 

 

2.3 Nondimensional governing equations 

 

In this section, the preceding theoretical arguments are cast in a form to yield practical governing 

equations for the considered problem. Referring velocity and temperature to the scales Ucrossflow 

(namely the velocity of the horizontal wind at a distance H from the floor, as shown in Fig. 1) and 

T (the difference between the temperature of the heated bodies Thot and the initial temperature of 

air Ta), respectively and scaling all distances on the reference length H and time on H/Ucrossflow, the 

governing equations in nondimensional form (incompressible form with Boussinesq approximation) 

can be cast in compact form as: 
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where V, T and p are the nondimensional velocity, temperature and pressure, respectively, ig is the 

unit vector along the direction of gravity (the reader is referred to APPENDIX A for additional 

information concerning the quantities appearing in this set of equations). Moreover, Re and Ra are 

the flow Reynolds and Rayleigh numbers, respectively: 

 
3

Pr Tg TH
Ra Gr



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Re crossflowU H


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where g is the gravity acceleration and T,  and  are the thermal expansion coefficient (used to 

account for the linear relationship between the fluid density and its temperature envisaged by the 

Boussinesq approximation), the kinematic viscosity and the thermal diffusivity of the fluid, 
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respectively. Notably, the Reynolds and Rayleigh numbers can be combined into another typical 

(meaningful) parameter, i.e. the so-called Richardson number:  

 

2 2Pr Re
T

crossflow

g TH Ra
Ri

U

 
            (6) 

 

This number has largely been used in the past to categorize the dynamics of hybrid thermal-forced 

convection into different regimes (e.g., the so-called ‘near and far field’ models, Dunn et al.,88; Lee 

and Chu,28) and does also play a crucial role in determining plume instabilities (Vincent and Yuen89; 

Hier Majumder et al., 90). 

In terms of Richardson number, the equations can therefore be reformulated as: 
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Here we have considered Pr=0.71 (air) and the following intervals for Ra and Re: 3x103Re3x104 

for Ra=2.7x108 and 3x104Re3x105 for Ra=2.7x1010 which correspond to 0.3(PrRi)30. Using 

the size of the square bars as an alternate reference length for the definition of these numbers, i.e. by 

introducing Rasource=Ra3 and Resource=Re, these intervals would read 2.5x102Resource2.5x103 for 

Rasource=1.56x105 and 2.5x103Resource2.5x104 for Rasource=1.56x107.  

The governing equations have been solved in the framework of a projection method and using open 

boundary conditions for the top and lateral boundaries (the reader being referred to APPENDIX B 

and C for additional details). 

 

2.4 Mesh assessment against the Kolmogorov length scale   

 

Though some general criteria can be found in the literature to estimate the number of points 

required by LES simulations (see, e.g., Goergiadis et al., 91; Choi and Moin92 and references therein), 

the application of such rules or estimates to thermal convection or mixed convection is not as 

straightforward as one would imagine. In natural or hybrid (forced-buoyancy) convection in which 

thermal plumes play a significant role, the flow is driven by buoyant forces rather than inertial 

forces, which leads to the need to reconsider some of the typical grid-spacing restrictions required 

for purely inertial (high-Re) flows (Farhangnia et al.,93). 
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This is the reason for which here we rely directly on theoretical rationale derived from the 

combination of the fundamental principles on which the LES approach is based (i.e. the universal 

behavior taken by turbulence and the related similarity hypothesis at the root of the Kolmogorov 

theory), and some (known) typical properties of thermal convection. There is indeed some 

consensus in the literature that, in the absence of observational (experimental) information to 

properly tune or constrain the mesh parameters, a judicious use of the LES approach should be 

based on the following two ‘practical’ criteria: 

 

 The LES simulations naturally tends to the results of DNS as the mesh size is reduced (see, 

e.g., Bastiaans et al.,94; 

 

 The size of the mesh is located in the inertial range of space scales (the filter width or size 

of the grid cell must lie inside the inertial range of the turbulent energy spectrum) 

 

While the first requirement does not pose significant difficulties (it reduces to a parametric 

assessment of the influence of the mesh on the solution as the grid size tends to the characteristic 

Kolmogorov length scale), the second criterion would require ‘a priori’ knowledge of the extension 

and location of the inertial range in the overall interval of space scales relevant to the considered 

problem.  

Some information about one of the two extremes of such a range is readily available as several 

analyses have been appearing in the literature reporting meaningful (quantitative) information on 

the Kolmogorov length scale () for different circumstances.  

For forced (e.g. shear) flows, it is known that: 

 
3/4

Re Re              (10) 

 

This correlation might be used when forced flow is dominant, i.e. for Ri<O(1) (see, e.g., Coceal et 

al.,95 for Ra=0). For dominant thermal convection (Ri>O(1)) similar relationships are available. As 

an example, for thermal convection being produced by heated vertical walls (gradient of 

temperature perpendicular to gravity) a quantitative measure of such a length scale can be found in 

the works by Paolucci96 and Farhangnia et al.,93:  

 
3/8
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Ra Ra
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Similar information about the other fundamental case in which the prevailing temperature gradient 

is parallel to gravity (heating from below) has been reported by other authors. As an example, 

following Kerr97: 
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0.32
|| 1.3Ra Ra             (12) 

 

As comparison of eqs. (11) and (12) leads to the remarkable realization that the heating-from-the-
side conditions is less demanding in terms of smallest space scale involved ( ||Ra Ra   ), and since 

for the conditions considered in the present work ReRa  , in the following we base our arguments 

entirely on estimates of Ra  and considerations relating to the more restrictive situation in which the 

temperature gradient is parallel to gravity (heating from below effect). For such condition, relevant 

data about the inertial wavenumber region located between the energy containing and the 

dissipative ranges have been presented in the very recent study by De et al.,98. As discussed in the 

preceding pages, according to the Kolmogorov’s hypothesis, the inertial wavenumber region should 

be located between the macroscopic energy containing scale H (where kinetic energy is injected 

into the system) and the dissipative scale (where energy is dissipated due to viscosity), namely the 

Kolmogorov length . This is equivalent to stating that in the alternative k scale (where k is the 

wavenumber) most of the kinetic energy of the flow resides at the lower extreme of the scale (k) 

with dissipation occurring essentially near its higher extreme (i.e. for k1) (Lohse and Xia,99). By 

defining the fraction of cumulative energy K above a given wavenumber k (fK) and the dissipation 

below it (f) as: 
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    (13) 

 

respectively, De et al.,98 could identify the extension of the inertial regime () as the size of region 

along the k axis delimited by the two points where the curves fK and f interest the f=0.1 axis (see 

Figure 13 in their work). The extension (upper boundary) of the inertial regime  was found to scale 

with Ra as: 

 
196.022.2  Ra  in the bulk         (14a) 

 
18.001.1  Ra  in proximity to the heated wall      (14b) 

 

Since in our case the physical domain is not bounded from above, which does not allow us to 

introduce the Rayleigh number in the classical way using as reference length the vertical (finite) 

extension of the considered enclosure, in the following we expressly rely on the concept of ‘local 

value’ of the Rayleigh number. In particular, since our computations are limited to a domain having 

a given vertical extension, whereas the dynamics of thermal plumes leaving the domain from the 

top are no longer ‘simulated’, we base our estimates on the most restrictive possible conditions 
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(conservative assumption), namely on estimates of the Rayleigh number based on such extension 

(which provides a rationale to our decision to define Ra using eq. (4)).   

 

 

 

 
 
Figure 2: Kolmogorov length scale and extension of the inertial regime  as a function of the 
Rayleigh number (based on existing correlations). 

 

 

In such a context, meaningful information is summarized in Fig. 2 where we have reported the size 

of the uniform mesh used for the present simulations (M1, M2 and M3) together with the available 

correlations in literature about the Kolmogorov length scale () and the amplitude (upper boundary) 

of the inertial range ().  

Such a figure is useful as it can be used to get ‘a priori’ some insights into the considered class of 

problems. Using LES in the region located under the  limit would clearly introduce no benefits in 

the computations (by contrast, evaluation of the additional terms required by the LES philosophy 

would increase the overall computational cost); using it in the region overlying the  line would 

lead to the inclusion into the stress of contributions which have no physical meaning (actually 

overestimating the extension of the inertial regime). It is the intermediate region that the LES 

approach enables a number of results to be obtained, which would otherwise be out of our reach. 

In Figure 2, it can be clearly seen that for Ra= 2.7x108 the resolution of grids M1 and M2 fall well 

within the inertial range. A separate discussion, however, is required for the grid M3. While it 



Accepted for publication in the Physics of Fluids on 22 October 2019 
 

13 
 

corresponds to the resolution that would be required to capture the smallest scale present in the flow 

(i.e. the Kolmogorov length scale) for Ra= 2.7x108, it simply occupies the center of the interval of 

scales extending from  to   when Ra= 2.7x1010 (a position which was previously taken by the 

mesh M1 for Ra= 2.7x108). While these arguments make the second of the ‘practical’ criteria 

reported before (the size of the mesh has to be located in the inertial range of space scales) satisfied, 

verification of the first criterion (LES simulations naturally tends to the results of DNS as the mesh 

size is reduced), requires parametric investigation for different mesh resolution. This is the reason 

for which we considered 3 different grids for Ra= 2.7x108. More precisely, we carried out 

simulations for a representative case (Ra=2.7x108, Re=7.5x103, =1) with the grids M1 and M2 in 

the framework of the LES approach (discussed in APPENDIX A and Sects. 2.3) and on the basis of 

DNS for the M3 case. We could verify that the solution obtained via DNS with the M3 mesh and 

that obtained with the LES for M2 were in good agreement (as witnessed by the related frequency 

spectra reported in Figs. 3). By inspecting this figure (compare Fig. 3a and 3b), the reader will 

realize that both spectra align with the  −5/3 law predicted by the Kolmogorov similarity hypothesis 

in an extended range of frequencies (we will come back to this important concept in Sect. 4). The 

LES simulations performed for M1 (see Fig. 3c), on the other hand, are also important as they 

demonstrate the ability of LES to effectively capture the dynamics also for scales located halfway 

the inertial range (comparison between Fig. 3b and 3c provides further evidence for the validity of 

our entire theoretical architecture).  

In the light of these findings and related arguments, all the simulations presented in this work have 

been performed using the mesh M2 and M3 for Ra=2.7x108 and Ra=2.7x1010, respectively. 

 

 

 

a) b)  
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c) d) 
 
Figure 3: Frequency spectra (probe 5) for Rasource=1.56x105, Resource=2.5x103 and =1: a) DNS with 
grid M3 (=1/12, Ra=2.7x108, Re=7.5x103), b) LES with grid M2 (=1/12, Ra=2.7x108, 
Re=7.5x103), c) LES with grid M1 (=1/12, Ra=2.7x108, Re=7.5x103), d) LES with grid M2 and 
extension of the domain along the vertical direction increased by 50% (=1/18).  

 

 

Before starting to deal with the description of the results, we wish to highlight that a final 

assessment has also been conducted to test the sensitivity of the problem to the vertical extension of 

the domain (while keeping fixed all the other parameters).  

In the light of the arguments elaborated before a scaling relationship accounting for the dependence 

of the required mesh density on the vertical extension of the domain (keeping fixed its horizontal 

extension, the size and spacing of the heat sources and the temperature difference between their 

surface and the fluid) can immediately be provided as follows: 

 
0.32
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where y is the non-dimensional size of the computational cell and H is the (dimensional) vertical 

extension of the domain. Put simply this would imply the following: doubling the vertical extension 

of the domain would require the use of a mesh having non-dimensional y scaled by a factor ½ for 

DNS (i.e. a number of points doubled) and a y scaled by a factor in the range between 1/2 and 2/3 

for LES. Such a variation, however, should not produce a significant change in the spectrum for 

fixed size and spacing of sources and fixed value of their relative temperature with respect to the 
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fluid. Accordingly, we have used this expectation as a third criterion to judge on the convergence of 

the overall numerical framework. The outcomes of the simulations conducted by increasing the 

vertical extension of the domain by 50% of its initial value while keeping the horizontal length and 

all the other parameters unchanged (that is by maintaining Rasource and Resource constant) are shown 

in Fig. 3d, where it can be seen (mesh M2) that the variations induced in the spectrum of the signal 

measured by probes located just above the sources by an increase in H ( being decreased from 

1/12 to 1/18) are almost negligible.  

With the resolution indicated in Fig. 2, the non-dimensional equations illustrated in Sect. 2.4 were 

integrated with a non-dimensional time step of the order of (10-6). 

A synthetic description of the salient outcomes of the present study is reported in the remainder of 

this work (articulated in focused subsections) together with a critical discussion of some 

accompanying necessary concepts provided to help the reader to interpret the considered dynamics. 

Results are mainly reported in terms of temperature fields (the related contour legend being shown 

in Figure 4). 

 

 

 
 

Figure 4: Contour legend (Nondimensional Temperature) 
 

4. Results 

 

Though many studies have provided some evidence that for thermal plumes at relatively high values 

of the Rayleigh number, such as those considered here, three-dimensional structures may appear in 

the ascending flow (Cortese and Balachandar, 100; Bastiaans et al.,94; Plourde et al., 101), as 

anticipated in Sect. 2.1, we limit to 2D computations. Though this assumption may be regarded as a 

limitation, in practice, the need for it stems from the two-fold purpose of limiting the (otherwise 

prohibitive) computational cost required by multi-plume configurations and, at the same time, from 

our stated intention to elaborate a minimal model allowing us to identify and describe clearly the 

differences between the dynamics of multiple buoyant jets in cross flows for conditions in which 

the flow is steady in mean (plume trajectories fixed in time) already considered in past works and 

the case for which the dynamics of plumes become highly unsteady and unpredictable (present case). 

The reason of such a choice also resides in the fact that, as anticipated in Sect. 2.1, these systems 

often display a prevailing two-dimensional nature. 

The next step in this hierarchy of models and objectives is represented by the choice of the 

constants (see APPENDIX A) to be used for the effective application of the LES model.  

Still keeping in mind the arguments given above, we rely on values of Cs and PrT which have 

enjoyed a widespread use in other studies over a wide range of problems and conditions. As an 

example, though the selection of the proper value to be used for the turbulent Prandtl number in 
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order to capture precisely experimental results is a still debated question, in line with the 

assumptions of Bastiaans et al.,94 and Li and Ma,71 for the simulation of thermal plumes, and those 

by Murataa and Mochizuki73 for the companion problem relating to turbulent heat transfer in 

rectangular ducts with transverse rib turbulators we fix PrT to 0.5. Moreover, following the analyses 

by Nakayama and co-workers (Nakayama and Nagai102; Nakayama et al., 103-107), who performed 

LESs of turbulent flows in the atmospheric boundary layer with thermal plumes for a variety of 

conditions (0.12Ri0.45, Re=O(105) obtaining good agreement with dedicated experiments, in the 

present paper we assume Cs=0.1 (notably, Li and Ma71 used the same value of Cs for pure 

thermogravitational convection, i.e. Re=0 while Ciofalo and Collins72, and Lohász et al.,75 yet 

assumed Cs=0.1 for rib-roughened channels in the opposite condition for which there was no 

thermal buoyancy, i.e. Ra=0). 

Prior to expanding on the present results, it is also instructive to briefly provide the reader with 

some fundamental information about the typical regimes of plume growth as they were categorized 

by Hier Majumder et al., 90. For Prandtl numbers ranging from 10-2 up to 104, these authors 

identified four different regimes of plume growth, which they classified in the Prandtl-Rayleigh 

number space as DV=diffusive-viscous regime; IVD=inviscid-diffusive regime; VND=viscous-

nondiffusive regime; IVND=inviscid-nondiffusive regime (using the relative importance of viscous 

and thermal effects as a distinguishing criterion i.e. the strength of gradients of temperature and 

velocity along the plume). According to these studies, for Pr 1 (the case of gases) the DV regime 

evolves directly into the IVND inviscid-nondiffusive regime for Ra exceeding a value  106. We 

can therefore expect that the plumes under investigation here (Ra>O(106)) will display the typical 

features of IVND plumes, i.e. thin sharp stems with well-defined caps and lobes that are 

significantly deformed by vortex structures. The tendency to develop such vortices makes this 

regime very susceptible to the development of turbulent structures (it is the most turbulent of the 

four regimes being characterized by fine, turbulent structures that cover a wide range of small scales, 

Lappa43).   

 

4.1. Plume unsteady dynamics and “pillar” formation 

 

Following a logical process, with systems of increasing complexity being described as the 

discussion progresses, we begin our analysis from the less turbulent regime, that is, the flow for 

Ra=O(108). In particular, first we examine a value of the Reynold number for which the dynamics 

are expected to be relatively similar to those for pure thermogravitational convection, i.e. Re=O(103) 

(corresponding to RiO(10)). 

Along these lines, Figs. 5, 6 and 7 show the evolution of the temperature field for Ra=2.7x108 and 

different values of the geometrical parameter . As evident in these figures, starting from a situation 

in which all the fluid has a uniform initial temperature (initial non-dimensional wind temperature 

T=0 as opposed to the temperature of the heat sources set to T=1), plumes grow in extension as time 

increases. They display the typical features of the IVND regime, i.e. a clearly identifiable cap can 
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be recognized with shape resembling that of a mushroom (Lappa108). This specific morphology is 

due to the interaction of the rising warm fluid with the external environment. Due to viscous friction, 

the rising fluid tends to be deflected producing a cap that keeps folding with time. 

 

 
 

Figure 5: Sequence of snapshots for the case Ra=2.7x108, Re=3x103, PrRi=30, =1: a) t0.5, b) 
t2.5, c) t5, d) t12.5.   

 

Remarkably, this means that other than promoting the formation of rising currents of hot fluid, a set 

of protuberances with square shape periodically arranged in the streamwise direction like those 

considered in the present work also play the role of vortex (eddy) generators. 

For each plume, the cap stays attached to the underlying stalk until at a certain stage, the stalk is 

broken due to a pinching phenomenon and the plume detaches completely from the solid element 

(heat source) that produced it.  
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Figure 6: Sequence of snapshots for the case Ra=2.7x108, Re=3x103, PrRi=30, =2: a) t2.5, b) 
t7.5, c) t20.   

 

Interestingly, given these behaviors, the present plumes might be considered similar to those of 

solutal nature occurring in other circumstances (see, e.g., Refs [109-112]). When the plume 

originates from a source having non-infinitesimal vertical size, also the ‘shape’ of the source (be it a 

crystal, a droplet or a bar with square cross-section at constant temperature as in the present case) 

has an effect in determining the dynamics of the plume, especially in the initial stages of evolution. 

As evident, e.g., in Fig. 4a, the heat released by the square solid elements along their lateral sides 

causes two small plumes to grow quickly and rise along such sides resulting in two small plumes 

apparently originating from the upper corners of the element. After some time, however, this 

memory effect is lost and the plume takes the classical configuration with a single cap that, as 

explained before, rises and folds in time.  

All these descriptions are quantitatively substantiated by the data reported in Figs. 5-7. As time 

progresses and horizontal shear develops, the plume stems tend to become quite sinuous with 

vortices being shed from either side of the plume lobes. This behavior is essentially due to a 

classical shear driven instability (Pera and Gebhart113; Hier Majumder et al., 90; Lappa108; Qiao et 

al.,114). For the so-called natural swaying motion of confined plumes, the reader may also consult 

Desrayaud and Lauriat115. In some cases, as a result of these instabilities, the plume stem becomes 

so distorted that the local Rayleigh number is supercritical. This leads the original plume to collapse 

with new plumes originating from the original plume stem (see, e.g., Cortese and Balachandar100; 

Vincent and Yuen116; and Shao et al.,117). 
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Figure 7: Sequence of snapshots for the case Ra=2.7x108, Re=3x103, PrRi=30, =3: a) t2.5, b) 
t5.0, c) t7.5, d) t20.   
 

Moreover, as proven by Hier Majumder et al., 90, the vortices in the lobes of the IVND plume can 

form Kelvin–Helmholtz waves, the susceptibility to form such waves being measured by the (local) 

gradient Richardson number: 

 

2loc

Ri T
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yu
y

 

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          (17) 

 

where u/y is the gradient of horizontal velocity. The instability typically occurs when Riloc drops 

below 1/4. Notably, as shown in Fig. 8, the value of the gradient Richardson number can be locally 

smaller than ¼ even if Ri>>1 (Ri=30/Pr for these cases). 
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a) 

b) 

c) 
 

                         
 
 
Figure 8: Snapshot of Riloc= ¼- Riloc (Ra=2.7x108, Re=3x103, PrRi=30, t20): a) =1, b) =2, c) 
=3.   

 

In the present study, rather than examining the dynamics of single plumes, we concentrate on the 

ensemble scenario. Along these lines, Figs. 5-7 are also instrumental in showing that, as a result of 

the unsteady (but progressive and continuous) formation and detachment of plumes from the heat 

sources and the tendency of the vortices they carry on to merge, a large scale vertically extended 

structure is formed approximately at the center of the array of heated bodies (hereafter we will refer 

to this large-scale convective structure as the central ‘pillar’).  

 

4.2. “pillar” migration  in cross flow 

 

The present section continues the investigation into these dynamics by probing the role of the 

Reynolds number. As Re is increased (the reader being referred to next group of figures, i.e., Figs. 9, 

8 and 9 for Re=7.5x103) the horizontal flow driven by the imposed wind starts to interfere 

significantly with the spontaneous plume clustering mechanism described in Sect. 4.1. 

Notably, for Re=7.5x103 (Ri5/Pr), recalling fluid from the right side is no longer possible because 

of the horizontal rightward flow. This obviously tends to limit the size of the convective structures 

resulting from the plume spontaneous coalescence process. 
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Following up on the previous point, it is also worth pointing out that the emerging structures do not 

occupy a fixed position. Rather they travel from the left to the right side. Though during this 

migration process they can still grow by engulfing smaller-scale plumes met along their way, at a 

certain stage they leave the domain by passing through the right boundary. This process is vaguely 

periodic as witnessed by the more or less constant number of pillars spreading horizontally in the 

downstream direction (while a pillar leaves the domain a new pillar is being formed at an upstream 

location). 
 
 

 
 

Figure 9: Sequence of snapshots for the case Ra=2.7x108, Re=7.5x103, PrRi5, =1: a) t1.5, b) 
t15, c) t33.75, d)  t37.5.   
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Interestingly, the number of coexisting pillars (present at the same time above the considered 

succession of repeated heat sources) changes as a function of the spacing parameter . By loosely 

defining a pillar as a convective structure resulting from the clustering and/or coalescence of plumes 

and having height at least 50% of the considered domain vertical extension, on average, a single 

pillar can be seen in Fig. 9, two pillars in Fig. 10 and 3 pillars in Fig. 11.  

 

 
 

Figure 10: Sequence of snapshots for the case Ra=2.7x108, Re=7.5x103, PrRi5, =2, initial time = 
106.2, time=0.75.   
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Figure 11: Sequence of snapshots for the case Ra=2.7x108, Re=7.5x103, PrRi5, =3, initial time = 
92.4, time=0.75.   

 

A further increase in Re (Re=3x104, Ri=0.3/Pr), however, has a dramatic effect. As witnessed by 

Fig. 12, in such conditions plumes do not detach and travel to regions where they could eventually 

interact and coalesce. As soon as they are formed, their shape is asymmetrically distorted by the 
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imposed vertical shear. As a result they assume an horizontal elongated configuration which for 

small spacing of the distribution of the square elements can cause the head of a plume to coalesce 

with the stem of the plume originating from the next (in the downstream direction) heat source. 

Though some localized thermal ‘peaks’ can still be seen along x as a result of the tendency of warm 

fluid to rise, horizontally extended regions with more or less uniform temperature are formed. 

 

a) 

b) 

c) 
Figure 12: Snapshots for the case Ra=2.7x108, Re=3x104, PrRi0.3: a) =1, t45, b) =2, t25, c) 
=3, t22.5. 

 

In practice, for such a small value of the product PrRi, the process is so fast that plumes have no 

time to travel along the vertical extension of the domain (where they could undergo shear driven 

instabilities and split). All the heat released in the domain by the heat sources essentially leaves it 

through the right outflow boundary (Fig. 12). This situation is formally akin to that occurring in the 

limit condition in which no thermal buoyancy is present, e.g., forced flow in ducts with sparsely 

distributed ribs used to modulate the fluid current in proximity to the wall. As shown by several 

investigators (Cui et al.,74; Fouladi et al., 51), in those conditions the flow continuously separates and 

reattaches between adjoining protuberances. In the present case, however, in addition to the 

blockage locally produced by the items mounted in a direction perpendicular to the main flow, there 

is a significant contribution brought to the separation process by thermal plumes, i.e. by buoyancy 

effects.    
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4.3. Asynchronous oscillations and emerging anisotropy   

 

The foregoing discussion has deliberately been limited to illustrating the macroscopic patterning 

behavior. However, a fruitful alternative for obtaining insights into the considered phenomena is to 

analyze the velocity signals measured by probes located above each of the items of square cross-

section regularly arranged along the bottom wall (at a distance d from the top wall of each of them, 

as shown in Fig. 1). As an example, Fig. 13 refers to Re=7.5x103, i.e. PrRi5. 

 

a) 

b) 

c) 

 
Figure 13: Signals provided by probes located above each heated item (purple, black, red, blue, 
green lines corresponding to probes 1, 3,5,7,9, respectively) for Ra=2.7x108, Re=7.5x103 (Ri5/Pr): 
a) =1, b) =2, c) =3.  
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These figures are extremely interesting for the insights they provide into the asynchronous nature of 

the plume generation and detachment dynamics (the emission of plumes at different stations is not 

synchronous in time). Moreover, though the distribution of signals is relatively involved (reflecting 

the turbulent nature of the flow) some important general characteristics can be identified. The 

reader will indeed realize that, regardless of the considered value of the spacing factor , the 

complexity of the signals tends to be mitigated as the distance from the inflow section increases (in 

other words, if the signal relating to a station (i) is considered, the signal relating to the next probe 

(i+1) in the downstream direction is relatively simpler). This is very evident in Fig. 13; as an 

example, the high frequency components clearly visible for probes 3 and 5 (black and red lines) are 

no longer present when probes 7 and 9 are considered (blue and green lines are much ‘smoother’). 

This information can also directly be gathered from Fig. 14a where we have plotted the ‘Kurtosis’ 

(or flatness) extracted from the vertical velocity signals reported in Fig. 13 as a function of the 

probe number. A continuous decrease in the value of this statistical measure of the signal can be 

seen over the distance that separates probe 2 from probe 8.   

An explanation for this trend can be elaborated in its simplest form on the basis of the argument that 

the high-frequency fluctuations in the signals relating to probes located closer to the inflow section 

(x=0) must essentially be ascribed to the interplay which takes place there between the imposed 

horizontal flow (wind) and the tendency of hot fluid to rise due to buoyancy. Such mutual 

interference causes continuous production of plumes at a relatively fast rate. As soon as a plume is 

spread along the horizontal direction by the imposed wind, a new plume is formed at that station. 

As a result, a high-frequency component enters the spectrum. This component can no longer be 

seen in the frequency spectrum of probes located further in the downstream direction as in that 

region the development of plumes is somehow shielded against the incoming horizontal flow by the 

vortices and resulting involved convective structures located in the upstream direction. Such 

vortices (induced by the interaction of buoyancy and horizontal wind) essentially cause an upward 

deflection of the mean wind. This gives plumes located downstream more time to grow before they 

detach from the heated bodies, which explains why the velocity vertical component displays a less 

turbulent behavior.  

A separate discussion is needed for the signal provided by the first numerical probe. As evident for 

all cases summarized in Fig. 13, for an intermediate value of Ri (PrRi5) this signal presents two 

clear distinguishing marks. Its frequency is extremely high and, at the same time, its amplitude is 

relatively limited. In line with the arguments above, the limited amplitude of the signal should be 

seen as a complete suppression of the possibility for the first finite-size heat source of the 

succession to develop extended plumes. This behavior yet reflects the extremely counteracting 

nature established there between the tendency of the heat source to create vertical plumes and that 

of horizontal wind to remove them (causing their detachment and transport in the downstream 

direction). Using a more heuristic perspective, it might be argued that since vertical plumes are 

characterized by strong horizontal shear while horizontal wind favors vertical shear, the two 
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mechanisms are incompatible in the sense that their respective transport mechanism exclude each 

other. 

a) 

b) 

c) 

 
Figure 14: Statistical characterization of plume dynamics Ra=2.7x108, Re=7.5x103: a) Kurtosis for 
=1, b) Skewness for =2, c) Skewness for =3.  

 

Additional useful insights can be gathered from Fig. 14b and 14c, where, as statistical measure of 

the highly unsteady state, we have reported (see, e.g., also Zhou and Xia118 and Djenidi et al.,119) the 

skewness of the signals at different locations for two different values of the heat source spacing 

(namely, =2 and =3, respectively). Two trends can clearly be recognized in these plots: 1) the 

skewness generally increases along the horizontal direction (on average, from probe 3 to probe 8 in 

Fig. 14b and from probe 1 to probe 7 in Figs. 14c), and, 2) negative values tend to disappear on 

increasing .  

The former trend can obviously be directly ascribed to the plume coalescence mechanisms, which 

tend to increase plume vertical extension and strength as the distance from the first heat source 

become larger. Along the same lines, the latter may be regarded the natural consequence of the 

reduced ability of plumes and vortices generated by a source to influence (causing a reversal in the 

vertical velocity) plumes originating from other sources in the downstream direction (due to the 

larger distance which separates them when  is increased).   
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4.4. More turbulent regimes  

 

Having finished a description of the dynamics for Ra=O(108) we now turn to discussing the 

analogous phenomena, which occur when the Rayleigh number is raised to 2.7x1010. A first 

example for this case is shown in Fig. 15 for the same value of the Richardson number already 

considered in Fig. 5 (PrRi=30).  

 
 

 
 

Figure 15: Sequence of snapshots for the case Ra=2.7x1010, Re=3x104, PrRi=30, =1: a) t2.5, b) 
t5, c) t10.  

 

Once again, these figures witness that for a relatively high value of Ri, the emerging scenario is 

formally similar to that potentially supported by pure RB convection. Plumes being generated at 

different stations in different instants (asynchronous process) tend to accumulate at the center of the 

domain where they merge leading to the formation of a spatially extended rising current (giant 

plume). For continuity, fluid enters the domain from the right open boundary (Fig. 18). As already 

discussed in Sect. 4.2, the existence of such a self-produced horizontal ‘wind’ makes the problem of 

plumes originating from discrete sources of buoyancy in a cross flow at high Ri formally equivalent 

to that of turbulent RB. However, (as expected) for mixed buoyant-wind flow the large scale pillars 

generally display a slightly eccentric position with respect to the center of the domain (Figs. 15c 

and 16c).  
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Figure 16: Sequence of snapshots for the case Ra=2.7x1010, Re=3x104, PrRi=30, =2: a) t2.5, b) 
t5, c) t7.5.   

 
Figure 17: Sequence of snapshots for the case Ra=2.7x1010, Re=3x104, PrRi=30, =3: a) t2.5, b) 
t5, c) t7.5.  
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Figure 18: Sketch of large scale flow emerging for pure RB convection or mixed flow with large Ri. 
 

 
 
Figure 19: Sequence of snapshots for the case Ra=2.7x1010, Re=7.5x104, PrRi5, =1: a) t75.6, b) 
t75.9, c) t78.2.    
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Figure 20: Sequence of snapshots for the case Ra=2.7x1010, Re=7.5x104, PrRi5, =2: a) t7.5, b) 
t11.2, c) t15.  

 

Moreover, it can be seen that, in general, for this value of the Rayleigh number, smaller and more 

frequent eddies are thrown into the flow indicating strong interaction between the horizontal wind 

and the rising currents. While in equivalent internal flow problems where no buoyancy is present 

(see, e.g., Miyake et al.,47-48), turbulators (ribs) break the laminar sublayer and give rise to localized 

wall turbulence due to flow separation and reattachment between the ribs, for the conditions under 

investigation here plumes are the main source of unsteady effects.  

On decreasing PrRi to the same intermediate value considered for Figs. 9-11, a situation with 

unidirectional (rightward) horizontal wind is recovered (Figs. 19-21). The pillars formed by the 

plume coalescence mechanism are transported by such a wind. When a pillar leaves the domain 

crossing the right outflow boundary, a new plume aggregate has already started to grow at the left 

side thereby making the entire process somehow cyclic (endless process which repeats in time) and 

keeping constant the number N of pillars present on average in the system (N as for the case with 

smaller value of the Rayleigh number, which may indicate that for a fixed value of the Richardson 

number N depends only on the effective discrete distribution of heat sources considered).  
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Figure 21: Sequence of snapshots for the case Ra=2.7x1010, Re=7.5x104, PrRi5, =3: a) t10.5, b) 
t11.8, c) t13, d) t14.3.   

 

 

4.5. Hierarchy of scales and departure from the Kolmogorov law 

 

In the present section, a further understanding of the observed dynamics is gained by considering a 

fine-grained micromechanical perspective, which helps us to uncover some differences among the 

different considered cases (not revealed by the macrophysical approach used in Sect. 4.4). In order 

to clarify the ‘nature’ of the examined turbulent states, in general, a slightly different point of view 

must be taken, that is, leaving aside for a while the strong nonlinear nature of macroscopic 

evolution, one has to deal with issues of complex behavior at smaller scales, where an interesting 

hierarchy of phenomena is established. In particular, the next level along such a hierarchy of scales 

is to take directly a close look at the dynamics of the eddies present in the flow (which, by 

interacting lead to the emergent macroscopic properties discussed before).    
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As a fleeting glimpse into Fig. 22 would confirm, the spatio-temporal evolution of the system for 

Ra=O(1010) becomes much more complex (the reader, e.g., may compare directly Fig. 22 and Fig. 

13a for the same value of the Richardson number and ).  

 

 
 
Figure 22: Signals provided by probes located above each heated item (purple, black, red, blue, 
green lines corresponding to probes 1, 3,5,7,9, respectively) for Ra=2.7x1010, Re=7.5x104 and =1. 

 

To elucidate further the significance of this observation, one should keep in mind that, even if the 

Richardson number may be regarded as the most influential parameter in terms of general features 

of the pattern and related evolutionary progress, the problem still retains a strong dependence on the 

effective values of the Rayleigh and Reynolds numbers. Indeed, an increase in these parameters, 

while keeping fixed Ri, has a two-fold effect. When the Rayleigh number is made higher, as already 

explained before, the frequency of production of plumes undergoes a remarkable increase (as it is 

also the case of standard RB convection). At the same time, the intensity of horizontal shear also 

grows, thereby making plume stems more susceptible to shear driven instabilities that can cause 

plume stalk deformation and plume cap detachment. On the other hand, an increase in Re, can cause 

plume instability due to the rise in the vertical shear. In practice, both mechanisms concur in 

determining plume splitting phenomena.  

As a result (the reader being referred again to Figs. 19-21), the size of eddies visible in the 

temperature and velocity fields decreases significantly, this effect being associated with a 

significant rise in the typical frequency of signals measured by probes at fixed locations (Fig. 22).  

Additional insights into this scenario can be gathered from an analysis of the typical frequency 

spectra, which have been reported in Fig. 23 for the same signals shown in Fig. 22 (Ra=2.7x1010, 

Re=7.5x104 and =1). 
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a) b) 

c) d)  
 
Figure 23: Frequency spectra for Ra=2.7x1010, Re=7.5x104 and =1: a) probe 1, b) probe 3, c) 
probe 5, d) probe 7. The spectrum relating to probe 9 has not been included as it is almost identical 
to that for the probe 9. All the plots have been truncated at =100. Consideration of these spectra at 
larger frequencies would make no sense as these frequencies are not directly resolved by LES 
(which implicitly account for them via the Smagorinsky-Lilly model). 

 

The high-dimensional nature of the chaos relating to the state visible in Fig. 22 is confirmed by the 

agreement of the spectra with the behavior that one would expect on the basis of the theory by 

Kolmogorov77-80 about the development of isotropic turbulence (already discussed to a certain 

extent in Sect. 2.2). In order to make this specific aspect evident, following typical practice in the 

literature (see, e.g., De et al.,98; Lappa and Gradiscak120; Oskouie et al.,121), we have reported the 

frequency and related amplitude in these figures using logarithmic scales. Moreover, we have also 

plotted a power law P() = (/c)
−5/3 (where c is a fitting parameter), just to help the reader to 

verify that, as predicted by the Kolmogorov’s turbulence similarity hypothesis, the frequency 

spectrum of velocities aligns with the  −5/3 law in an extended range of frequencies. 
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Along these lines, it is worth recalling that Kolmogorov (Kraichnan82) originally elaborated a 

picture of steady, homogeneous, isotropic turbulence in which equilibrium conditions are attained 

because the energy injected in the flow per unit time is balanced precisely by the amount of energy 

dissipated per unit time. Such dissipation is due to molecular viscosity and, therefore, takes place at 

very short length scales while the injection occurs at macroscopic length scales. Indicating by ε the 

common rate of injection and dissipation, according to this theory the energy cascades tightly at this 

(constant) rate from the large scales of injection to the short scales of dissipation, this process being 

mediated by the non-linear terms in the governing Navier-Stokes equation. In particular, the most 

interesting aspect of this theory is that an intermediate range of wavenumbers (k) exists, which is 

well separated from large k (corresponding to small length scales) and also from small k 

(corresponding to large length scale), where the energy spectrum is not influenced by the specific 

mechanisms of energy input and loss and depends only on ε and the local wave-number k (a 

dimensional analysis leading to E(k) k−5/3).  

From a practical standpoint, such an interval is limited at one side by the a length-scale H 

representative of the considered domain, which is the scale at which energy is injected into the fluid, 

and at the other side by the scale where internal energy is produced by frictional effects at expenses 

of the kinetic energy of the flow. In the present case, we have truncated the plots at =100 as the 

simulation was no longer able to capture convective modes with frequencies lying above this 

threshold (the effect of these high wavenumber spatial modes, however, was implicitly taken into 

account in the framework of the approach described in Sects. 2.3-2.4, that is the intrinsic philosophy 

on which LES modes are based).  

Interestingly, though all spectra follow with a good degree of approximation the Kolmogorov law, 

some weak departure can be seen for the behavior of the first two or three probes where the average 

inclination of the spectrum seems to be weaker. Since for Ra=2.7x1010 and smaller value of Re 

(PrRi=30) we found the slope of all the spectra to align with the Kolmogorov law regardless of the 

considered station (not shown), we conclude such a departure is essentially due to the mechanism of 

plume removal (described in Sect. 4.3) being operative there, which, by interfering with the growth 

and detachment of plumes, causes a modification in the behavior of turbulence driven by thermal 

buoyancy.    

The trend remains essentially the same if another (larger) value of the spacing parameter  is 

considered (see, e.g., Fig. 24 for =3). As shown in this figure, for =3 the appearance of the 

spectra (in terms of tide) is yet non-homogeneous, as they displays appreciable modifications 

weakly depending on the sequential order of  probe position. However, in this case, interestingly, 

the spectra are simpler, which can be ascribed to the reduced number of plumes being present in the 

domain at a fixed time per unit length when the spacing among the sources is increased. 
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a) b) 

c) d) 

 
Figure 24: Frequency spectra for Ra=2.7x1010, Re=7.5x104 and =3: a) probe 1, b) probe 3, c) 
probe 5, d) probe 7.   

 

4.6. Sheltering effect at high Ra and “bubble” formation 

 

Notably, the descriptions given in the earlier section about the dependence of plume dynamics on 

the considered station (together with the observed different spatio-temporal behavior relating to the 

first heat source) may be vaguely reminiscent of an effect already known for the case of jets 

interacting with a cross flow for conditions in which the overall flow is steady in mean, that is, the 

so-called “sheltering effect”. Past analyses on this specific case have indeed revealed some 

anisotropy in the macroscopic patterning behavior. As illustrated, e.g., by Yu et al.,122 and Lai and 

Lee26, given a set of jets in a cross-flow with dynamics steady in mean, the leading jet is typically 

deflected more by the ambient current, while the other (rear) jets are less affected (but all to a 

similar degree). The downstream jets, all having similar trajectories, typically experience a reduced 
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effective crossflow velocity due to the blockage and sheltering effect of the leading jet26,122. There is 

some consensus in the literature that the shrinkage in the effective cross flow velocity for the rear 

jets becomes stronger when the jet spacing is decreased (however, it has been observed to depend 

weakly on the sequential order of  jet position and the number of jets in the group).  

Some analogies can be identified between these observations and the dynamics presented here. 

Even if the present plumes display a highly unsteady behavior, indeed, some kind of sheltering 

effects can yet be discerned with regard to the plumes originating from sources located at a certain 

distance from the first source of the succession. As discussed before, the convective structures 

produced by the coalescence of plumes apparently prevent the other plumes located downstream 

from interacting directly with the incoming horizontal wind. This effect allows plumes located 

downstream to develop and extend along the vertical extension to an appreciable extent (though 

affected by instability and swaying motion) before their stem is broken and/or cap detachment 

occurs. Some hierarchy can also be identified in terms of spectra. These display inclination slightly 

depending on the relative position of the considered source until they become all similar (and 

follow the Kolmogorov law just like plumes in RB convection would do) beyond a given station 

(which, in turn, we find to be a function of the spacing parameter ).  

What is emphasized here is the possible inter-relatedness between the anisotropy in the frequency 

spectra behavior as a function of the position and the purely geometrical effect identified in past 

analyses for flows that are essentially steady in mean.  

All these arguments may be repeated under a slightly different perspective by simply stating that 

while the classical sheltering effect manifests essentially in terms of geometrical features (steady 

plumes located downstream less deflected), it is somehow ‘transferred’ to the temporal features of 

the system when turbulent systems (such as those examined here) are considered. In our case, 

obviously, there is no (more deflected) plume stably located at the first station. Rather, as illustrated 

before, there the dynamics are dominated by the continuous interference of vertical shear 

(horizontal wind) and buoyancy (horizontal shear), as witnessed by the high frequency of local 

oscillation and their relatively small amplitude (see Sect. 4.3).  

As a concluding remark for this analysis, we wish to highlight that, interestingly, the simulations 

performed for Ra=2.7x1010 have revealed that the dynamics established in a given neighborhood of 

the first station might be even richer than those illustrated in Sect. 4.3 if relatively high values of the 

Reynolds number are considered.  
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Figure 25: Snapshots for the case Ra=2.7x1010, Re=3x105,PrRi=0.3, =1, t50.  
 
 

 
Figure 26: Snapshots for the case Ra=2.7x1010, Re=3x105,PrRi=0.3, =2, t45.   

 

 

For Re=3x105 (PrRi=0.3, Figs. 25-27), the maximum vertical extension of the plume aggregates is 

relatively limited. For this value of Ri, moreover, though large plumes resulting from the 

coalescence of eddies can be found in the right part of the domain, plumes tend to maintain the 

small-scale structure that they have when they are formed and detach from the top of the square 

heat sources (Fig. 25-26). Nevertheless, for =2 and =3 a localized recirculation with relatively 

large scale can be seen across the entire region in between the first and second source (this is very 

evident, e.g., in Fig. 27). This recirculation (horizontally extended above the first two sources) 

entraps heat, thereby leading to a local temperature that is slightly higher than the temperature 

established between other couples of heated elements. As shown in Fig. 27, sometimes this 

recirculation (hereafter we will refer to it as the heat ‘bubble’) breaks and releases heat to the 

external environment in the form of a localized ‘eruption’, i.e. a short-lived vigorous vertical 

movement, which creates locally a rising column of warm fluid that is then bended by the 

horizontal wind and forced to reattach (this behavior being reflected by the vigorous oscillations 

measured by the first numerical probe, see Fig. 28, which might be regarded as a clear 

distinguishing mark with respect to the behavior shown in Fig. 22). 

Bubbles of such a kind are relatively common when a wind with relatively high value of the 

Reynolds number interacts with a topographic obstacle (see, e.g., Mason and Sykes,123) or inside 

isothermal channels where the flow meets a forward-facing step (Largeau and Moriniere124; Abdalla 

et al.,125; Hattori and Nagano126). The present simulations reveal that bubble interaction with the 

inherently unsteady dynamics of thermal plumes can lead to a new kind of effect.  
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Figure 27: Snapshots for the case Ra=2.7x1010, Re=3x105, PrRi=0.3, =3, initial time = 55, 
time=1.5, a recirculation is visible between the first and second sources while large vortical 
structures resulting from the coalescence of eddies can be seen in the right part of the domain. 
 

 
 
Figure 28: Signals provided by probes located above each heated item (purple, black, red, blue, 
green lines corresponding to probes 1,3,5,7,9, respectively) for Ra=2.7x1010, Re=3x105 and =3.   
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a) b) 

 

c) d) 

 
Figure 29: Frequency spectra for Ra=2.7x1010, Re=3x105 and =3: a) probe 1, b) probe 3, c) probe 
5, d) probe 7.   

 

Most interestingly, as witnessed by the increased density of the spectrum in Fig. 29a with respect to 

that shown in Fig. 24a, the vigorous vertical movement created by the heat bubble rupture induced 

by thermal buoyancy, compensates the effects produced by the reduced number of plumes being 

present in the domain per unit length when the spacing among the sources is increased. Comparison 

with Fig. 24 also leads to the interesting conclusion that (as expected) for higher Re, a larger 

distance from the inflow section must be considered before the frequency spectrum aligns with the 

Kolmogorov law.  
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5. Conclusions 
 

Thermal plumes interacting with a cross flow (horizontal wind) represent a fundamental problem of 

great interest, standing at the intersection of many technological fields. Beyond practical 

applications, fascination with the spatiotemporal patterns that arise spontaneously in these 

nonequilibrium systems has stimulated detailed experimental and theoretical investigations 

resulting in a sound understanding of many aspects of the formation of related patterns. Despite the 

umbrella of on-going research on the subject, however, a large number of key issues and problems 

remain unresolved. 

In the present study, starting from considerations relating to the so-called sheltering effect, that is, 

the known spatial (geometrical) anisotropy created in a group of thermal plumes by the interaction 

with the cross flow, we have elaborated a ‘minimal’ model to inquiry about the potential 

reverberations of this mechanism (known to be operative for cases in which plume trajectories do 

not depend on time) on flows which are extremely time dependent (turbulent). 

Special care has been devoted to the assessment of the conditions which make the problem well 

posed from a computational point of view. Such assessment has been partially based on physical 

reasoning involving the known behavior of turbulence on certain scales on the one hand and on 

available estimates of such scales on the other hand. In particular, specific effort has been provided 

to investigate the triadic relationship among the different (typical) effects which determine the 

response of these systems, namely the spacing among sources, the intensity of buoyancy forces 

(measured by the Rayleigh number) and forced convection (governed by the Reynolds number) and 

identify possible universality classes of behaviors. 

As revealed by the present simulations, the dynamics are rich and can produce different scenarios 

depending on the relative importance of the considered influential factors.  

For sufficiently small value of the Reynolds number, the dynamics are formally similar to those of 

pure buoyancy convection. The main outcome of the plume coalescence process is a central thermal 

rising current. As a result of the significant amount of fluid leaving the physical domain through the 

upper boundary, by continuity new fluid is absorbed from both the left and right neighboring 

regions, producing as a natural consequence centerward directed horizontal currents (entering the 

domain from both the left and right sides). These winds further reinforce the mechanism leading 

thermal plumes originating from peripheral regions to cluster at the center thereby feeding the 

central pillar. 

The (approximate) central symmetry of this configuration is obviously broken by the presence of 

the horizontal wind which interferes in different ways with the plume clustering process. More 

precisely, while buoyancy promotes the emergence of plumes and associated localized vorticity 

effects (horizontal shear), which lead to the spontaneous formation of large scale structures (in the 

form of vertically extended columnar regions of hot fluid), imposed wind (vertical shear) 

counteracts such tendency through a two-fold cause-and-effect mechanism: On the one hand it 

opposes to the natural coalescence process responsible for the formation of the large structures by 
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promoting plume instabilities and splitting, on the other hand, it causes a continuous migration of 

the existing structures in the downstream direction. This effect prevents the formation of a single 

(static) thermal giant rising jet originating from the center of the configuration (which is replaced by 

“pillars” with intermediate size, dynamically travelling in the downstream direction).  

The number of these features depends essentially on the heat source spacing (such spacing having 

obviously an impact on the distance that plumes originating at different locations have to travel 

before they can coalesce) and on the value taken by the Reynolds number. In particular, as Re 

grows, the number of pillars increases while their size becomes smaller. Since the wind prevents 

many small scale plumes from travelling in the upstream direction, for these cases most of pillar 

growth occurs essentially because the convective structures resulting from localized coalescence 

process travel in the downstream direction (thereby capturing newborn plumes along their way). 

The departure from the situation which would be produced by pure buoyancy convection is not 

limited to the patterning behavior displayed by plumes and the spatial aggregation phenomena 

discussed above. It also occurs on a range of smaller scales, as made evident by the frequency 

spectra related to velocity signals taken at fixed (evenly spaced) positions. For the probes located in 

proximity to the inflow section (in correspondence of the first two or three heat sources) the average 

trend (inclination) of the frequency spectrum is slightly smaller than that predicted by the 

Kolmogorov similarity hypothesis, whereas the agreement is very good for stations located at a 

sufficient distance from that section. On the basis of the numerical simulations, we conclude that 

such a departure must be ascribed to a fast mechanism of plume removal/rebirth that is established 

in proximity to the inflow section.  As soon as a plume is spread along the horizontal direction by 

the imposed wind and relatively warm fluid is replaced by cold fluid, a new plume is formed at that 

station. As a result, high-frequency components enter the velocity spectrum of frequencies. These 

components vanish when probes located further in the downstream direction are examined. This 

effect can be explained taking into account that the development of plumes originating from the top 

surface of the heat sources is somehow shielded against the incoming horizontal flow by the 

vortices located in the upstream direction (for this reason plumes located further downstream have 

more time to develop along the vertical direction). 

At the highest considered value of the Rayleigh number, interestingly, for =2 and =3 the 

continuous mechanism of plume removal and regeneration generally affecting the first heat source 

station is taken over by an alternate phenomenon featuring the emergence of a localized 

recirculation with a relatively large scale (involving at least two neighboring heat sources). This 

circulation can temporarily entrap heat, thereby causing a local increase in the temperature, until it 

breaks and releases heat to the external environment in the form of a localized ‘eruption’, i.e. a 

short-lived vigorous vertical movement. These observations lead to a remarkable conclusion. The 

classical concept of sheltering mechanism (i.e. an increased deflection of the leading buoyant jet 

with respect to the trailing ones) might be properly ‘extended’ to highly unsteady (turbulent) 

dynamics to indicate a variety of new phenomena which somehow still make peculiar the behavior 

of the first station with respect to the other heat sources located downstream. An exciting prospect 
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for the future is to expand the range of applicability of these arguments to real 3D configurations 

and/or to implement turbulence models more sophisticated with respect to that used for the present 

analysis.  

 

APPENDIX 

 

A The eddy viscosity and thermal diffusivity 

 

As outlined in Sect. 2.2, with the LES the set of balance equations is parametrized in terms of a 

spatial operator known as “filter width”, which defines the smallest scale under which the turbulent 

flow behavior must be expressly ‘modelled’ rather than computed. Accordingly, the resulting 

approach can capture a variety of scales, which range from the smallest physically relevant scale 

when the filter width tends to zero (the space-averaged equations tend to original flow equations) to 

the ‘mean’ large-scale turbulent flow when a very large filter width is assumed. With the classical 

Smagorinsky model (Smagorinsky86) the filter width is set approximately equal to the size of the 

numerical grid, which allows the eddy viscosity to respond to the existence and the strength of local 

shears, while retaining a structure that is “consistent with the existence of an inertial range 

surrounding the grid scale” (Wong and Lilly63). 

By denoting by  and  the kinematic viscosity and thermal diffusivity of the considered fluid, 

respectively (their ratio being the well-known Prandtl number Pr=/), with the Smagorinsky 

model, such quantities must be ‘increased’ by adding to them the corresponding turbulent 

counterparts, namely the so-called eddy (or subgrid-scale) viscosity and thermal diffusivity (T and 

T), respectively.  

Such quantities, in turn, depend on the local conditions established in the flow via the relationships: 
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 is the so-called resolved strain rate (in dimensional form), which for a two-dimensional 

flow having velocity components u and v along x and y, respectively, reads: 
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(where the tilde is used to indicate dimensional quantities) and 
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Moreover,  
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where PrT is known as the turbulent (or subgrid) Prandtl number. 

Typically both the non-dimensional coefficient Cs and the subgrid-scale Prandtl number are 

approximated to be constants. The ranges of values of Cs and PrT commonly used are 0.065Cs0.2 

(Li and Ma71) and 0.4PrT1 (Edison54; Kimmel and Domaradzki64).  

The above practice has its theoretical foundation in the attempt to account for the sub-grid scales 

removed by the filtering operation by introducing a sub-grid-scale stress tensor and relating its 

deviatoric (trace-free) part to the resolved strain-rate tensor via T. Similarly, the sub-grid-scale heat 

flux is related to the large-scale temperature gradient via T. 

As with this approximation it is implicitly assumed that small thermal scales depend only on the 

resolved dynamic scales, such a model is in general ‘corrected’ for the case of natural convection 

where the flow is obviously produced by buoyant forces and not via a purely dynamic forcing (Salat 

et al.,127). This idea was originally developed by Lilly87 and then further elaborated over the years 

by other researchers. Both T and T must be revised to include a terms that takes into account 

mixing due to statistically unstable conditions (Mason128). Typically, such corrections are 

implemented as:  
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where g is the gravity acceleration and T the fluid thermal expansion coefficient (Wong and Lilly63; 

Kimmel and Domaradzki64; Devenish et al.,67). As observed, e.g., by Bastiaans et al.,94, this is 

equivalent to assuming a sub-grid model able to parameterize the sub-grid stresses and sub-grid heat 

fluxes so that, the large flow scale can be accurately computed. The second (buoyancy production) 

term appearing inside the square root is generally less than, but comparable to the strain term51. 

With the present implementation the overall quantity inside the square root has been constrained as 

indicated by Eidson54 and Kimmel and Domaradzki64. 

 

B Numerical method (Projection method)  

 

In this section we first lay the general foundations of our numerical treatment of the Navier-Stokes 

equations cast in the framework of the LES model described in Sects. 2.3. In that section, some 

effort has been devoted to show that, in terms of an appropriate hydrodynamic description of the 

behavior of the flow on the small scales, the mathematical model can considerably be simplified (no 



Accepted for publication in the Physics of Fluids on 22 October 2019 
 

45 
 

need to solve additional equations as it is the case, e.g., of RANS models). The preceding statement, 

however, should not be misread as implying that the resulting numerical problem is innocuous and 

free of drawbacks. The numerical solution of the Navier-Stokes equations in the context of the 

Boussinesq approximation (density variations allowed only in the buoyancy production term) brings 

problems of its own, including (but not limited) to the issue of making the velocity field effectively 

divergence free (incompressible). This objective can be pursued by means of various strategies.  As 

a common feature, many of them rely on the natural coupling between velocity and pressure set by 

the momentum balance equation. These techniques represent a class of methods generally known as 

primitive-variables methods, to distinguish them from other approaches where the original set of 

equations and related unknowns are replaced by alternate forms obtained by integration or 

derivation (e.g., application of the curl operator to the momentum equation to turn it into the 

balance equation for vorticity, see, e.g., Bucchignani and Stella129-130).   

With the techniques based on primitive variables, initially the dependence on one of the unknowns, 

that is the pressure, is neglected in the momentum equation. The other primitive variable, namely, 

the velocity, obtained by integration of the truncated equation has, therefore, scarce physical 

meaning (the velocity field obtained in this stage is generally called “provisional” or “intermediate” 

field just to emphasize this concept).  

 

 * 2 2 2
2 2

1
2

Re Pr Re Pr Re

n

n
g

Ra T Ra
V V t VV S V T i

y


                 
   (B1) 

 

It does not satisfy the incompressibility constraint and does not even take into account the effect of 

pressure gradients. Nevertheless, it retains an important feature, that is, its ‘vorticity’ is the same 

that would be possessed by the equivalent physical velocity. Under a purely mathematical 

perspective, this property can be seen as the consequence of a well-known concept in vector 

analysis, i.e. that the application of the curl operator to the gradient of a scalar quantity (the pressure 

in this case) is zero (vorticity does not depend directly on the pressure gradient). Notably, from an 

algorithmic point of view, this property is extremely important as it paves the way to the 

implementation of another very important notion in mathematics, that is, the inverse theorem of 

vector calculus. Originally used by Ladyzhenskaya131 for her studies on the existence and 

uniqueness of the solutions of the Navier-Stokes equations, this theorem implies the remarkable 

possibility to make a velocity field unique provided its curl (vorticity) and divergence (and normal 

component at the boundary) are assigned or known. Following this argument, the intermediate 

velocity field can formally be expressed as the combination of a solenoidal (divergence-free) 

component and the gradient of a scalar field (a curl-free part): 

 
*V V             (B2a) 
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If the scalar field is assumed to be proportional to the pressure  =p (where  is a constant), the 

provisional velocity field can formally be expressed as: 

 
*V V p              (B2b) 

 

As V must be solenoidal, one may also write: 

 
*2 1

p V


             (B3) 

 

In practice, the possibility to express V as a linear combination of V* and p and the additional 

equation (B3) can be used to devise a time-marching procedure for the integration of the original set 

of Navier-Stokes equations in which viscous and incompressibility effects are accounted for in a 

segregated manner132-134. The initial approximation to the momentum equation (namely eq. (B1)) is 

initially advanced to determine V*, then eq. (B3) is solved that enforces the divergence constraint, 
and finally the physical velocity field is determined via eq. (B2) as *V V p   , which explains 

why these techniques are also known as projection methods, fractional-step methods or pressure-

correction methods. This approach was referred to as the Consistent Pressure Poisson Equation 

(CPPE) in Gresho and Sani135. For problem closure  must be set equal to t, that is, the time-

integration step assumed for the time-marching algorithm. The consistency of the approach can 

finally be verified by applying the curl operator to the divergence-free velocity field: 

 
* *V V t p V               (B4) 

 

As the curl of V is the same that would be obtained if the momentum equations were solved in its 

complete form (including the pressure gradient) and its divergence satisfies the continuity equation 
0V  , the obtained velocity field is unique from both mathematical and physical points of view. 

These techniques have enjoyed a widespread use in the literature especially for categories of flows 

intrinsically unsteady for which they enable cost-effective solutions by virtue of recent progresses 

in the capacity of computers and the increasing success of direct numerical simulation in capturing 

bifurcations and instability phenomena136,137. Additional information on this class of methods can 

be found in Refs [138-142], while for a review of recent advances with regard to their application to 

situations in which the density cannot be considered constant (Boussinesq approximation no longer 

valid), the reader may consider Refs [137, 120] and references therein. 

In the present work, this method has been implemented using schemes explicit in time for the 

integration of both the momentum and energy equations. Convective terms have been treated using 

the QUICK scheme while standard central differences have been used to discretize the diffusive 

terms. Given the delicate role played by the coupling between pressure and velocity (see, e.g., Choi 

et al.,143,144) a staggered arrangement has been implemented for the primitive variables, that is, 
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while pressure occupies the center of each computational cells, the components of velocity u and v 

are located at the center of the cell face perpendicular to the x and y axes, respectively (see, e.g., 

Lappa145). The ability of this algorithm to capture adequately the turbulent states of RB convection 

and related properties was demonstrated in a preceding work of the present authors50, which stands 

as a validation of the present simulations based on the DNS approach.   

 

C Boundary conditions  

 

Even though some relevant information about the boundary conditions (BCs) which make the 

related IBVP (Initial Boundary Value problem) well posed from a mathematical point view is 

available (see, e.g., Gresho146; and Lappa147), the identification of proper BCs for open boundaries, 

however, is not as straightforward as one would imagine. Such boundaries emerge as a consequence 

of the need to truncate the (otherwise infinite) computational domain in order to make the problem 

tractable, i.e. representable with a finite number of grid points. Obviously, this modus operandi 

implicitly requires the introduction of additional numerical BCs. In practice, these are needed to 

drive the fluid into the domain with desired velocity intensity and direction (consistent with the 

flow that would have occurred considering an infinitely extended domain), allowing at the same 

time it to leave the domain without being disturbed by the presence of the boundary. The choice of 

these BCs has critically been discussed in the literature for a relatively long time and the selection 

of conditions which make the simulations numerically stable is still being debated148-155. These 

studies have led to a common framework nowadays known as the open boundary condition (OBC) 

problem. For the present problem, we have found the so-called “prognostic equation” for the 

outflow (OOBC) (right and top boundaries of the computational domain shown in Fig. 1) to provide 

reasonable algorithm stability. In the most general form it reads: 

 

0C D
t n n n

             
          (C1) 

 

where  is a generic thermofluid-dynamic quantity, i.e.  T, u or v, C is a constant assumed to be 
equal to the averaged velocity perpendicular to the boundary ˆC V n   and D is a diffusion 

coefficient, which can be either the kinematic viscosity for velocity or the thermal diffusivity for 

temperature. For C=D=0, eq. (C1) would reduce to a standard Dirichlet condition, which, however, 

is unsuitable as it would give rise to a boundary layer and ensuing unphysical results. Similarly, the 

popular Neumann condition 0
n





 should also be avoided as, in the case of unsteady flows, it 

could jeopardize the physical consistency of the solution by causing non-physical fluctuations in the 

pressure field upstream of the OOBC (reflecting towards the interior at the outflow boundary 

thereby making the algorithm prone to numerical instability).  
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Though the inclusion of the diffusive term appearing in eq. (C1) is known to have beneficial effects 

on the stability of the time-marching procedure described in APPENDIX B (see, e.g., Stevens148 

and Fregni et al.,9), it has not been included in the present calculations as our simulations proved to 

be quite stable over the considered range of conditions by simply discretizing the Robin-type 

condition represented by the first two terms of eq. (C1) with a leap-frog scheme and an upwind 

space, respectively , that is: 

 

1 1
1

1 2

1 1
n n n
b b b

r r

r r
   


           

         (C2) 

 

where the superscript n denotes the time step, the subscript b obviously refers to the boundary cells 

and r=C(t/x).  

Moreover, we have imposed homogeneous Neumann (zero-gradient) conditions for the pressure on 

the bottom and left (inflow) boundary, whereas pressure has been set to zero at the open boundary 

to make the problem well-posed (this condition allows fluid to enter or leave the computational 

domain if the global divergence of the velocity field is not zero, which is consistent with the 

behavior of unconfined domains, Craske and van Reeuwijk153). Additional care, however, has been 

required to treat the problem relating to vortices leaving the domain through the right or top open 

boundary. Indeed, vortices implicitly give rise to reversed flow regions as they cross the open 

boundary, which may give rise to numerical instability if not addressed adequately. In order to do so, 

a specific procedure was implemented in our algorithm to switch from the conditions represented by 

eq. (C1) (when the fluid flows out of the domain) to ‘backflow conditions’ specified to account for 

flow reversal (fluid flowing into the domain through the open boundary). More specifically, the 

homogeneous Dirichlet condition for pressure has been locally replaced by the Neumann one, vice 

versa, for temperature, eq. (C1) has been replaced by a Dirichlet condition with T set equal to the 

average temperature along the considered portion of boundary.   
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