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Linear stability of buoyant convective flow in a vertical channel with internal
heat sources and a transverse magnetic field

A. Hudoba1, a) and S. Molokov1

School of Computing, Electronics and Mathematics, Coventry University, Priory Street, Coventry CV1 5FB,
United Kingdom

(Dated: 5 October 2016)

Linear stability of buoyant convective flow of an electrically conducting fluid in a vertical channel owing to
internal heat sources has been studied. The flow takes place in a transverse, horizontal magnetic field. The
results show that up to four different local minima may be present in the neural stability curve. Up to two of
these modes may be the most unstable depending, critically, on the value of the Hartmann number. Over a
wide range of moderate to high Hartmann numbers thermal waves dominate the instability. As the Hartmann
number increases, however, this mode is strongly damped. Then the so-called Hartmann mode takes over,
which involves the characteristic Hartmann layers at the walls appearing due to modification of the basic
velocity profile by the magnetic field. Overall, for liquid metals at high magnetic fields the basic flow is very
stable. Variation of the Prandtl number in a wide range has also been performed as, depending on the type of
an electrically conducting fluid (liquid metal or various kind of electrolytes), the Prandtl number varies over
several orders of magnitude. As may be expected, the increase of the Prandtl number lowers the instability
threshold for the thermal waves.

I. INTRODUCTION

Over many years several concepts of liquid metal blankets for thermonuclear reactors have been developed1. The
main aims of these devices is to cool the reactor first wall, to breed tritium, or both2–4. The flow in the blankets
occurs in the presence of a high magnetic field of between 5 and 12 Tesla, so that the flowing liquid metal experiences
the action of strong, braking, electromagnetic forces. In addition, the velocity profiles are highly affected forming
various type of thin boundary layers at the duct walls. The geometry of the ducts is usually very complex, involving
expansions, bends, manifolds, etc. The main elements of the blankets, however, are horizontal or vertical rectangular
ducts, depending on the concept. Here we will focus on vertical ducts.

An important factor to consider for all the blanket designs is neutron irradiation resulting in internal volumetric
heating of the flow. The stability of mixed convection in ducts under fusion reactor blanket conditions has been
studied in the presence of a transverse magnetic field5–7 in the quasi-two-dimensional approximation, which applies
only for thermally and electrically insulating walls transverse to the magnetic field. The background temperature
field is supposed to vary across, not along the field. When these conditions are not fulfilled, the analysis does not
apply. To get a clear picture of the effect of internal heating on the magnetohydrodynamic (MHD) flow all possible
types and combinations of the boundary conditions are of interest. In this study we will focus on the flow in a vertical
channel in a transverse field, assuming that the aspect ratio of the duct is sufficiently high, so that the lateral walls
are removed to infinity. The fluid is heated by the internal heat sources and cooled at the walls (Figure 1).

The non-magnetic problem of a convective flow in a vertical channel with uniformly distributed internal heat sources
and with walls maintained at constant and equal temperatures has been discussed in detail in Refs. 8, 9 and 10. The
results have been obtained first under conditions where the effects of thermal perturbations are negligible8. Stability
of flow has been studied in a hydrodynamic formulation by the solution of the Orr-Sommerfeld eigenvalue problem
with a given velocity profile. In the further works9,10 thermal perturbations have been taken into account. The main
conclusion was that for low values of the Prandtl number the instability develops at the boundaries between the
counter flows. As the thermal effects increase, the hydrodynamic instability turns into the instability of the type of
thermal waves. This transition occurs continuously owing to a peculiar feature of the marginal stability curve. For low
values of the Prandtl number, a single minimum exists. With its increase, the curve forms a second local minimum,
then a cusp, and then a loop, corresponding to the mode of dynamic origin.

Stability of a convective flow in the same geometry has been also studied in the presence of a transverse magnetic
field11 for low values of the Hartmann number (up to 10). As expected, these results show the stabilizing effect of a
transverse magnetic field.

a)ac0640@coventry.ac.uk
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The goal of this work is to provide a complete linear stability analysis of the flow induced by uniformly distributed
heat sources and confined between two parallel vertical plates, and to understand the instability mechanisms when
the external magnetic field increases from zero to high values. The problem is considered assuming a fully developed
flow, realized in the middle portion of a sufficiently long vertical channel, where the end effects from a top and bottom
lids of a cavity are negligible. This allows very accurate analysis of the instabilities by pseudospectral methods. The
presence of the lids, however, is kept in mind, so that the flow rate in the channel is equal to zero.

II. FORMULATION

Consider a time-dependent, convective flow of a viscous, electrically conducting fluid subject to a uniform externally
applied magnetic field B0 = B0ex in the presence of gravity g = −gez, where g is the gravitational acceleration. We
choose Cartesian coordinate system (x, y, z) with the origin located in the mid-plane of the channel, where the rigid
boundaries are situated at finite values of the x− coordinate and all the body forces act in the (x− z) plane (Figure
1). It is assumed that the horizontal extension of the plates is large so that the lateral walls do not affect the flow.

The two parallel vertical rigid boundaries are maintained at constant and equal temperature, Tw. Convective
motion is induced by internal heat sources of uniform volume density Q distributed through the channel. If the
vertical extension of the channel is sufficiently large and end effects at distant walls in the z− direction can be
omitted, the parabola-type temperature profile is established8. This leads to a symmetric plane-parallel steady flow
consisting of three convective streams: the central upstream and two downstreams at the walls.

Material parameters of the fluid are defined by the density ρ, kinematic viscosity ν, thermal diffusivity κ, thermal
expansion coefficient β, electric conductivity σ and specific heat at constant pressure cp.

It is convenient to present the governing equations in a dimensionless form by scaling the length by the distance
between walls d, time t by d2/ν, velocity v by ν/d, pressure p by ρν2/d2, electric potential φ by B0ν, temperature
T − Tw by a typical temperature difference ∆T = Qd2/νρcp and magnetic field by B0. The following nondimensional
numbers are introduced as control parameters:

Gr =
gβ∆Td3

ν2
, Ha = B0d

√
σ

ρν
, Pr =

ν

κ
. (1)

Here the strength of buoyancy forces is characterized by the Grashof number, Gr, the ratio of the electromagnetic to
viscous forces is defined by the square of the Hartmann number, Ha, while the Prandtl number, Pr, depending solely
on the fluid properties, measures the ratio of the kinematic viscosity to the thermal diffusivity.

The problem is considered in the so-called inductionless approximation for low values of the magnetic Prandtl num-
ber, Prm = µ0σν << 1. Here µ0 stands for the magnetic permeability of vacuum. According to this approximation,
an induced magnetic field due to fluid flow is assumed to be negligible12.

−1 −0.5 0 0.5 1
−15

−10

−5

0

5

10

15

 

 

g

z

B0

x

y

FIG. 1. Schematic diagram of the vertical fluid layer with side walls of equal temperatures and uniform internal heating. The
total flow rate is equal to zero.
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The density-temperature relationship is assumed to follow the usual Boussinesq approximation for incompressible
fluids13, with ρ = ρ0(1− β(T − Tw)), where ρ0 is the density of the fluid at a wall temperature. The resulting set of
nondimensional equations governing the motion of the fluid is:

∂v

∂t
+ (v · ∇)v = −∇p+∇2v +Ha2(−∇φ+ v× ex)× ex +GrT êz , (2)

∂T

∂t
+ (v · ∇)T =

1

Pr
∇2T + 1 , (3)

∇ · v = 0 , (4)

∇2φ = ex · (∇× v). (5)

The boundary conditions at x = ± 1
2 are:

v = 0 , T = 0 . (6)

Although in general the electric conductivity of the walls may vary, the electric boundary conditions never enter
the analysis and have no effect on the stability of the flow for the problem considered. We discuss this in more detail
in section IV.

III. BASIC FLOW

We will be interested here in the linear stability of a flow resulting from the buoyant convection due to internal
heating. In order to perform the stability analysis of the system described above, first the equilibrium state needs to
be defined.

The problem has a steady basic flow, with the single-component velocity profile w0 = [0, 0, w0(x)] and the basic
temperature profile T0(x) (Figure 2), governed by the following set of equations:

w′′′0 −Ha2w′0 +GrT ′0 = 0 , (7)

T ′′0 + Pr = 0 , (8)

as follows from Eqs. (2)−(5). Here the prime symbol (′) denotes the derivative with respect to x.
As we consider here the case of a closed channel at high values of |z|, the total flux of flow across a horizontal plane

vanishes: ∫ 1/2

−1/2

w0 dx = 0 . (9)

The analytical expressions for the basic velocity w0(x) and temperature T0(x) profiles11, being even functions with
respect to the channel axis, are:

w0 =
PrGr

2Ha2

{
−x2 +

2Ha cosh(Hax)− 6 sinh(0.5Ha) +Ha cosh(0.5Ha)

12Ha cosh(0.5Ha)− 24 sinh(0.5Ha)

}
, (10)

T0 =
1

2
Pr

{
−x2 +

1

4

}
. (11)

The temperature profile does not depend on the Hartmann number, and thus is identical with the case of natural
convection in the absence of the magnetic field.

For the unidirectional stationary channel flow, which is independent of the y− and z−coordinates, there is only one
non-zero component of current jy,0, and the electric field E0 = constant. From Ohm’s law for the fluid follows:

jy,0 = E0 − w0 . (12)
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For the walls,

j±y,0 = σ±E0 , (13)

where j±y,0, σ
± are the dimensionless electric current and electrical conductivity for walls at x = + 1

2 and x = − 1
2 ,

respectively.
Integrating Eq. (12) across the channel and taking into account Eq. (9) gives:

I0 = E0 . (14)

The total current flowing in the fluid and the walls must be zero. Thus,

I0 +

∫ − 1
2

− 1
2−h−

j−y,0dx+

∫ 1
2 +h+

1
2

j+
y,0dx = 0 , (15)

where h± are dimensionless thicknesses of the walls at x = + 1
2 and x = − 1

2 , respectively. Substituting Eqs. (14) and
(13) into Eq. (15) yields:

E0

(
1 + c+ + c−

)
= 0 , (16)

where c± = σ±h± are the wall conductance ratios of the walls at x = + 1
2 and x = − 1

2 , respectively. The above
equation implies that the electric field vanishes, so that ∇φ0 = −E0ey = 0, which implies in turn that φ0 is a
constant. Thus it can be set to zero as a reference potential:

φ0 = 0 , (17)

throughout the domain for any wall conductance ratios of the walls. The reason for this is that the electric currents
do not flow in the walls due to E0 = 0, which is a direct consequence of the flow rate through the channel being zero.

The upward fluid motion due to internal heat sources must be compensated for a closed cavity. This is done by the
induced pressure gradient:

dp0

dz
= PrGr

{
1

8
− 1

Ha2
+

6 sinh(0.5Ha)−Ha cosh(0.5Ha)

24Ha cosh(0.5Ha)− 48 sinh(0.5Ha)

}
. (18)

Further examination of the basic flow shows that the inflection points in the velocity distribution, where d2w0/dx
2 =

0, appear at the values of xi given by:

fi = cosh(Haxi) =
C1

Ha3
, (19)
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FIG. 2. Basic temperature profile (a) and basic velocity profile for Pr = 0.015 (b) for Ha = 1 (dotted line), Ha = 50 (broken
line) and Ha = 100 (solid line). The basic temperature is scaled here by Pr, the basic velocity is scaled by PrGr/Ha.
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FIG. 3. Inflection and zero-velocity points of the steady-state velocity profile for Ha = 20 (a) and Ha = 50 (b). The location of
inflection points along the x− direction is given by the intersection of cosh(Hax) (solid lines) with a constant function (broken
lines). The points of zero velocity are given by the intersection of cosh(Hax) with a quadratic function of x (dotted lines).

which do not correspond to the points of zero velocity between convective counterflows, x0, given by:

f0 = cosh(Hax0) =
C1x

2
0 − C2

2Ha
. (20)

Here C1 = 12{Ha cosh(0.5Ha)− 2 sinh(0.5Ha)} and C2 = Ha cosh(0.5Ha)− 6 sinh(0.5Ha).
With the increasing values Ha, the inflection points in the velocity profile drift further apart from the points of

zero velocity towards the channel walls, as shown in Figure 3a for Ha = 20 and Figure 3b for Ha = 50. The leading
terms of the asymptotics for the position of the inflection and zero-flow points are:

xi ∼= ±
{

1

2
− 2 ln(Ha)

Ha

}
, (21)

x0
∼= ± 1√

12
. (22)

From the expression (21) follows that the lines of inflection move right into the Hartmann layers.
At high values of the Hartmann number, Ha >> 1, the full basic velocity profile (10) can be replaced by the

following asymptotic profile:

w0 =
PrGr

2Ha2

{
−x2 +

Ha− 6

12Ha− 24
+

Ha

6Ha− 12

(
eHa(x−0.5) + e−Ha(x+0.5)

)}
, (23)

where the first two terms in brackets represent the core velocity, while the third term corresponds to the Hartmann-
layer corrections.

In this study, three values of the Prandtl number, Pr = 0.015, 7.01, 38.055, were chosen for sample calculations,
corresponding to the cases of liquid metals, water-based electrolytes and Flibe14, respectively.

The reason for choosing such a wide range of Pr is the following. First of all, for liquid metals, Pr is very small,
i.e. they are good thermal conductors. Liquid metals are most relevant materials for blankets. Secondly, water-based
electrolytes have been proposed for visualization of magnetohydrodynamic (MHD) convection15 as the liquid metals
are opaque making the direct visualization of flow impossible. Finally, Flibe14 has been proposed as a replacement of
liquid metal for blanket design. As all the electrolytes it has low electrical conductivity but high Prandtl number. As
we will see below, the instability mechanisms may be completely different depending on the type of the fluid.

The magnetic field in a fusion blanket can reach very high values of 10 − 12 Tesla. For a channel of width d = 5
cm, in the parameter ranges considered, corresponding values of the Hartmann number are Ha ∼ 104 for eutectic
lead lithium alloy, and Ha ∼ 102 for Flibe. In experiments performed under magnetic fields up to 5 Tesla, the
corresponding Hartmann numbers are Ha ∼ 103 for liquid metals, and Ha ∼ 101 − 102 for water-based electrolytes.
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The dimensionless parameters and scales introduced in Eq. (1) allow to conclude the insignificance of the Joule
heating effect for all three kinds of working fluids16–18 in the parameter range considered. In a channel of width d = 5
cm, the ratio of the Joule heating (j2/σ) to the internal heating source Q, is of order 10−7 − 10−8 ·Ha2/Gr. Thus
the effects of the Joule heating may be neglected. From Eq. (12) with E0 = 0 follows that the electric currents in
the Hartmann layers have the same scaling as those in the core of the flow, so the same estimate for these layers is
valid. This contrasts with flows with non-zero flow rate where such currents are higher by a factor of Ha or by 1/c±,
whatever is higher. For estimates of the importance of Joule heating in pressure-driven channel flows for blanket-
relevant conditions see Ref. 19. More generally, Joule heating is important mainly for flows driven by sufficiently
strong, externally imposed electric current crossed by the magnetic field.

IV. DISTURBANCE EQUATIONS AND ENERGY ANALYSIS

The stability is investigated here by the linear analysis. Assuming that disturbances to the flow are fully three-
dimensional, the flow can be decomposed into the basic flow and the fluctuating component F = F0 + f(x, y, z, t).
Additionally the perturbations can be expressed with Fourier expansions in the y− and z− directions f(x, y, z, t) =

f̂(x) exp{iyky + izkz + λt}, where ky and kz are the wavenumbers in the y− and z− directions, respectively. Here
λ = λr + iλi is a complex eigenvalue of perturbations with real part λr representing their growth rate while λi− their
angular oscillation frequency.

Assuming that the introduced perturbation is infinitesimally small, the problem (2)−(5) is linearized at the vicinity
of the steady state (10)−(11) and all the products of perturbations are neglected. Additionally, in order to reduce
the number of variables, the vorticity vector is introduced ω = ∇× v. This leads to the following set of equations for
the disturbed velocity, vorticity, temperature and the disturbed electric potential:

{D4 − w0ikzD
2 + w′′0 ikz −Ha2 d2

dx2
}û−Grikz

dθ̂

dx
= λD2û , (24)

{ 1

Pr
D2 − w0ikz}θ̂ − T ′0û = λθ̂ . (25)

{D2 − w0ikz}ω̂x − w′0ikyû+Griky θ̂ −Ha2 d2φ̂

dx2
= λω̂x , (26)

ω̂x = D2φ̂ , (27)

Here the operator D = ik + [ d
dx , 0, 0] has been introduced.

As in the non-magnetic flow, the system of governing disturbance equations separates into two sets, and an indepen-
dent set consisting of equations (24) and (25) can be solved separately. Equations (26) and (27) involving disturbed
vorticity and electric potential can be omitted as the Squire modes are stable with or without the transverse magnetic
field20. Further, for Eqs. (24) and (25) Squire’s theorem is valid, which can be easily shown similarly to Ref. 20.
Through a straightforward transformation, Eqs. (24)−(25) can be reduced to an equivalent set of two-dimensional

equations. Substituting the polar wavenumber, k =
√
k2
y + k2

z , and a reduced Grashof number, Gr2d = Grkz/k, the

disturbed velocity (24) and temperature (25) equations can be written as:

{D4 − w̃0ikD
2 + w̃′′0 ik −Ha2 d2

dx2
}û−Gr2dik

dθ̂

dx
= λD2û , (28)

{ 1

Pr
D2 − w̃0ik}θ̂ − T ′0û = λθ̂ . (29)

Here w̃0 is the basic velocity profile (10) for the reduced Grashof number, Gr2d. Thus the problem with three-
dimensional disturbances has been reduced to the two-dimensional one. Note that for convection in a horizontal
layer21,22 this is not the case. For flows in an aligned field this is not the case either23.

The appropriate boundary conditions are imposed at the solid isothermal side walls, where the velocity and tem-
perature perturbations vanish and hence:

û =
dû

dx
= θ̂ = 0 at x = ±1

2
. (30)
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Note that the electric potential does not enter the analysis and the electric conductivity of the side walls plays no role
in this problem.

Equations (24)−(25), together with the boundary conditions (30) constitute a boundary value problem, which
defines the spectrum of perturbations. The flow is stable for λr < 0, neutrally stable for λr = 0 or unstable when
λr > 0. The stability criteria are determined here in terms of the critical Grashof number, Grcr, as a function
of various parameters. Neutral stability results have been calculated for fixed values of Pr and Ha, and then the
dependence of Grcr on these parameters is studied.

A. Energy Considerations

The perturbation energy analysis is performed for better understanding of the instability mechanisms. The equations
for energy components can be derived from the governing equations: the fluctuating kinetic energy from the momentum
equation (2) and the fluctuating thermal energy from the temperature equation (3). These equations are studied in
order to establish different energy contributions corresponding to specific instabilities.

Following the approach in Ref. 21, the governing perturbation equations are multiplied by the corresponding complex
conjugates (denoted here with an asterisk) and integrated along the x− direction. The real parts of the resulting
equations give the desired energy balances.

The rate of change of the fluctuation kinetic energy K:

Re

(
dK

dt

)
= Re

(
λ

∫
x

v̂ · v̂∗dx
)

= Kd +Kf +Kb +Km , (31)

where K =
∫
x
v̂ · v̂∗dx, with the viscous dissipation of fluctuating kinetic energy Kd :

Kd = Re

(∫
x

D2 v̂ · v̂∗dx
)
, (32)

the production of fluctuating kinetic energy by shear of the basic flow Kf :

Kf = −Re

(∫
x

w′0 û ŵ
∗dx

)
, (33)

the work done by buoyancy forces Kb :

Kb = Re

(∫
x

Gr θ̂(êz · v̂∗)dx
)
, (34)

the dissipation of fluctuating kinetic energy by magnetic forces Km :

Km = −Re

(∫
x

Ha2(ŵ ŵ∗)dx

)
. (35)

The rate of change of the fluctuation thermal energy Θ:

Re

(
dΘ

dt

)
= Re

(
λ

∫
x

θ̂ θ̂∗dx

)
= Θd + Θ1 + Θ2 , (36)

where Θ =
∫
x
θ̂ θ̂∗dx, with the dissipation of fluctuating thermal energy Θd :

Θd = Re

(∫
x

1

Pr
D2 θ̂ · θ̂∗dx

)
, (37)

the production of fluctuating thermal energy by horizontal transport of temperature Θ1:

Θ1 = −Re

(∫
x

T ′0 û θ̂
∗dx

)
, (38)

the production of fluctuating thermal energy by vertical transport of temperature Θ2:

Θ2 = 0 . (39)
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The negative values of energy contributions characterise stabilizing dissipative terms, while the positive contribu-
tions are by nature destabilizing.

In the problems considered here the energy analysis results are given at the critical thresholds. According to the
neutral stability condition, for λr = 0 the disturbances are neither amplified nor damped, thus dK

dt = dΘ
dt = 0. Since

the critical eigenvectors are defined to within a multiplicative constant, the energy equations specific terms also can
be given to within a multiplicative constant. In order to present well-defined energy balances, the energy equations
are scaled by the corresponding dissipation terms:

K̄d = K̄f + K̄b + K̄m = 1 , (40)

Θ̄d = Θ̄1 + Θ̄2 = 1 , (41)

where the scaled terms are denoted with an overbar.
To compare the kinetic and thermal energy contributions, the following dimensionless ratio is given:

R =
1

Gr

Kd

Θd
, (42)

For the fluctuating thermal energy, in general the dissipation term is balanced by vertical and horizontal temperature
transport. In this case, as the basic temperature profile is independent of the z− direction, the only contribution
balancing dissipation Θ̄d is due to horizontal transport of temperature Θ̄1:

Θ̄d = Θ̄1 = 1 . (43)

V. LINEAR STABILITY RESULTS

The problem has been solved numerically by the Chebyshev spectral collocation method. The Matlab code created
for the purpose of this project has been tested on simplified problems, for which the results have already been obtained
by a number of authors. Additionally a comparison has been made with the results for Ha = 0 at the same conditions10

and a good agreement provides a further check on the numerical accuracy.
The convergence of the numerical solution has been verified by varying the number of collocation points N , ensuring

a reasonable accuracy of determination of the critical parameters. The number of collocation points required to meet
a prescribed convergence criterion in the case of a liquid metal (Pr = 0.015) are presented in Table I. The critical
Grashof numbers are accurate to 6th significant figure at relatively low cost for moderate values of the Hartmann
number, up to Ha = 200. Further increase of Ha considerably increases the computational cost and the convergence
criterion is lowered to 4 significant figures. At Ha ∼ 1000 the convergence becomes slower and the number of
significant figures decreases.

6 digit convergence

Ha N
10 23
50 36
100 49
200 67

4 digit convergence

Ha N
200 56
400 102
600 119
600* 159

TABLE I. Minimum number of collocation points N required for the convergence (6 digits for low and moderate Ha and 4
digits for high Ha) for Pr = 0.015. The * symbol denotes the secondary, more stable Mode 2.

It has already been shown by other authors9,11, that in the absence of an externally applied magnetic field, as
well as for low values of the Hartmann number, the marginal stability curve is continuously transformed when Pr
increases. The obtained numerical results show a considerable distortion of the marginal stability curve with the
increasing values of both Prandtl and Hartmann numbers.

The stability curves calculated for Ha = 100, are shown in Figure 4. For Pr ≤ 0.1 the curve has a single minimum
(Mode 1), corresponding to a hydrodynamic instability mode. For Pr > 0.1, the second minimum (Mode 2) is formed
by continuous transformation of the neutral curve. The nature of Mode 1 also changes from dynamic to mixed with
significant thermal component (see Table II below). The most unstable (most dangerous) mode corresponds to the
absolute minimum of the stability curve.
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Further increase of the value of Prantdl number results in a formation of a cusp and then a closed loop of the
neutral curve. For higher values of Pr we observe the shift of the wavenumber values, as well as rather interesting
shape of the curve. For Ha = 0 the loop is well-formed, while for finite Ha it becomes very narrow. The lower branch
of the curve is pulled towards higher wavenumbers and forms a spear-shaped distortion (e.g. see Pr = 3 in Figure 5a).

The formation of a loop is associated with the interaction between neighbouring levels of the complex eigenvalue.
The characteristic cross point D in Figure 5a corresponds to the intersection of two highest eigenvalues at the neural
point λr = 0. For Ha = 100 and Pr = 3 it occurs at k ' 2.3. For k > 2.3 the intersection takes place at negative
values of λr, while for k < 2.3, it occurs above the neutral stability level (Figure 5b), causing the formation of the
loop. Within the loop it is the second highest eigenvalue (as an extension of the maximum growth rate) taking values
of λr = 0 (Figure 5b) and marking the onset of instability.

A number of interesting features of the marginal stability curve can already be observed at moderate values of the
Hartmann number (see Ha = 10 in Figure 6a). It happens, that the appearance and shape of the loop depends on the
interaction between three highesteigenvalue levels, as shown in Figure 6b for Ha = 10 and Pr = 10. It also happens
that, for certain values of parameters, a local minimum of the more stable Mode 2 occurs within the loop, as shown
in the same example.

Another interesting distortion of the marginal curve occurs when the highest eigenvalue (maximum growth rate)
crosses the neutral level of λr = 0 multiple times, yet the formation of a loop is impossible at this wavenumber as the
interaction between the two levels takes place at negative values of λr, as shown for Ha = 10 and Pr = 8 in Figures
6a and 6b.

The variation of the eigenvalue spectra and resulting stability curves, depending both of the Prandtl and Hartmann
numbers, is rather complex. For values of Ha ∼ 100 and Pr ∼ 10 and higher we observe a formation of yet another
minimum (Mode 3), appearing at higher wavenumber values, within the elongated tongue-shaped distortion, as shown
in Figure 7 (characteristic point M).

Moreover, in the range of Ha between 60 and 200 we have found a fourth local minimum on the branch of the curve
that is totally disconnected from the main one. This minimum corresponds to the so-called Hartmann mode and is
related to the instability of the Hartmann layers of thickness O(Ha−1) at the duct walls (Mode 4). Extension of this
mode to lower and higher values of Ha has proved to be very difficult owing to the limits of current computational
resources. We discuss this mode in Conclusions.

The dependence of the critical Grashof number, critical wavenumber and critical frequency on Pr, for different values
of the Hartmann number, are shown in Figures 8 and 9. The results show that for the lowest values of the Prandtl
number, (Pr < 10−2), where thermal effects are negligible due to very effective heat conduction, the critical Grashof
number reaches an asymptotic relation of Grcr ' aPr−1, so that the critical Rayleigh number, Racr = PrGrcr = a.
Here the coefficient a depends on the Hartmann number and increases for the higher values of the applied magnetic
field. In general, the increase of Ha has stabilizing effects on the flow, while the increase of Pr destabilises it.

As Ra becomes the governing parameter, the instability clearly has hydrodynamic origin and is modified by variation
of the basic velocity profile only without any effects of thermal perturbations.

For Ha → 0 the effect of thermal perturbations, namely the sudden decrease of the critical wavenumber and a
frequency jump, is observed at Pr ∼ 10−1, as discussed in Refs. 9 and 11. A departure from the purely hydrodynamical
formulation is shown in Figure 8, where an additional curve represents the solution of the Orr-Sommerfeld boundary
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FIG. 4. Marginal stability curves for Ha = 100 and Pr = 0.1 (dotted line), Pr = 0.12 (solid line), Pr = 0.15 (broken line).
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value problem with a given velocity profile8. For Pr → 0 and in the absence of an external magnetic field, both the
critical wavenumber and critical frequency tend to unique limits of kcr = 4.15 and fcr = 37.10, respectively. Similar
behaviour is observed for small and moderate values of Ha, as shown for Ha = 10 in Figure 8 (here the unique limits
are kcr = 4.36 and fcr = 85.56).

For higher values of Ha, thermal effects are observed at much lower values of the Prandtl number. In contrast to
the non-magnetic case, the critical wavenumber and frequency values do not tend to unique limits, even for Pr as low
as 10−4. The jump in the wavenumber (associated with the formation of a loop within the marginal stability curve)
gradually shifts towards lower values of Pr and is followed by a sudden wavenumber increase for higher Pr, which
corresponds to the stretching of marginal stability curves (see Ha = 100 and Ha = 200 in Figure 9). The contour
plots illustrating temperature disturbance isotherms and disturbed velocity streamlines are presented for Ha = 100
in Figure 11.

At high values of the Prandtl number, Pr � 1, where thermal effects are most pronounced, the critical values of
frequency and the Grashof number asymptotically decrease for all values of Ha.

The instability mode corresponding to the loop formation (Mode 2) for the case of Ha → 0 follows closely the
Orr-Sommerfeld solution8. The increase of the Hartmann number shifts the appearance of this mode towards lower
Prandtl numbers. For the range of Ha considered here, the critical Grashof number decreases as Grcr ∼ Pr−1,
while both the critical wavenumber and critical frequency values tend to constant limits (see Figures 8 and 9). The
increasing magnetic field strongly affects this instability, as shown in Figure 12, where the contour plots of temperature
disturbance isotherms and disturbed velocity streamlines are presented for the sample value of Pr = 7.01. It is
noticeable that the temperature disturbance moves towards the walls as Ha increases, together with the inflection
points.

The appearance of the third kind of instability, corresponding to the stretching of neutral stability curves (Mode
3), is first observed at Pr ∼ 10 for Ha ∼ 100. This instability mode follows closely the most unstable mode at
higher frequency and much higher wavenumber values, as shown in Figure 9 for Ha = 100 and 200. Contour plots of
disturbed temperature isotherms and velocity streamlines (Figure 13) show clearly, that these instabilities are located
near the vertical boundaries.

The dependence of the critical Grashof number, critical wavenumber and the corresponding frequency on the
Hartmann number, for the sample values of the Prandtl number corresponding to liquid metals (Pr = 0.015) and
to Flibe (Pr = 38.055) is shown in Figure 10. For Ha → 0 the critical values of parameters, for all the instabilities
discussed above, tend to unique limits. The externally applied magnetic field, stabilizing the flow, shifts the onset of
instabilities to higher values of Gr, which is accompanied for all of the instability modes by the increase in frequency.

For the most unstable Mode 1, corresponding to the hydrodynamic minimum of the marginal stability curve, the
critical wavenumber increases for Ha & 1, until it reaches its maximum value (at Ha ' 9 for Pr = 0.015 and
Ha ' 120 for Pr = 38.055 in Figure 10). The increase is more pronounced for higher values of Pr. Further increase
of the Hartmann number shifts the critical wavenumber towards lower values, increasing the size of the marginal cells.
The critical values of the Grashof number and frequency for this most unstable mode reach asymptotic relations at
the highest values of the Hartmann number (Ha > 200).
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The more stable Mode 2, corresponding to the formation of the loop in the marginal stability curve, appears for
Pr = 38.055 at the whole range of Ha considered here and is very efficiently stabilised by the magnetic field. The
quick increase of Grcr is accompanied by the decrease of the critical wavenumber. For liquid metals, this instability
mode appears at very high values of Ha (Ha ' 580 for Pr = 0.015 as shown in Figure 10), with higher critical
wavenumber and frequency values than the corresponding most unstable mode.

The instability mode appearing due to the stretching of marginal stability curve (Mode 3) is observed for Pr = 38.055
at Ha ≥ 78. The magnetic field stabilises this mode less efficiently, as shown in Figure 10. The critical wavenumber
increases very quickly with the increasing Ha, which corresponds to a strong decrease of the size of the marginal cells.

A summary of the fluctuating energy budget for each of the instability modes discussed is given in Tables II−IV.
For the most unstable Mode 1 at the lowest values of Pr the ratio of dimensionless kinetic and thermal dissipation
(R � 1) indicates indeed a purely dynamical origin. For the lowest values of the Hartmann number (see Ha = 0.02
in Table II, the negligible effects of buoyancy at Pr � 1 gain importance and take over as the main destabilizing
contribution in the kinetic fluctuating energy balance for Pr ∼ 1. At higher values of the Prandtl number this
instability mode changes its nature due to the increasing importance of thermal dissipation (R < 1). At Pr = 38.055,
corresponding to Flibe, the most unstable mode manifests as a thermal wave.

For low and moderate values of the applied magnetic field (see Ha = 10 in Table III), a similar behaviour to the
non-magnetic case can be observed at the lowest values of Pr, with the additional stabilizing effects of the magnetic
field. With the increase of Pr, the fluctuating energy contribution due to buoyancy very quickly takes over as the
main destabilizing factor, while the energetic contribution due to shear of mean flow remains negligible for Pr & 1.
The stabilizing contribution of the magnetic field remains then at the order of kinetic energy dissipation.

Pr K̄f K̄b K̄m R

Mode 1 (most unstable)
10−2 0.990 0.010 0 13382
0.015 0.985 0.015 0 5985
0.5 0.419 0.581 0 13.12
1 0.175 0.825 0 7.223
2.5 0.042 0.958 0 3.788
7.01 0.004 0.996 0 2.014
10 0.001 0.999 0 1.638
38.055 0 1 0 0.778

Mode 2
2.5 0.390 0.610 0 2.551
7.01 0.304 0.696 0 1.176
10 0.283 0.717 0 0.879
38.055 -0.385 1.385 0 0.099

TABLE II. Energy balance for Ha = 0.02
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Pr K̄f K̄b K̄m R

Mode 1 (most unstable)
10−2 1.603 0.042 -0.645 2545
0.015 1.583 0.062 -0.645 1152
0.1 1.303 0.379 -0.682 35.26
0.5 0.355 1.846 -1.201 5.012
1 0.023 2.394 -1.417 3.161
2.5 -0.084 2.470 -1.387 1.681
7.01 -0.062 2.278 -1.216 0.851
38.055 -0.017 2.019 -1.002 0.314

Mode 2
1 0.465 1.096 -0.561 3.104
5 0.239 1.224 -0.463 1.146
7.01 0.215 1.231 -0.446 0.899
38.055 -0.462 1.735 -0.273 0.099

TABLE III. Energy balance for Ha = 10

Pr K̄f K̄b K̄m R

Mode 1 (most unstable)
10−2 -0.05 13.42 -12.37 61.33
0.015 -1.41 16.86 -14.45 38.15
0.1 -7.64 36.96 -28.32 14.88
1 -8.00 56.49 -47.49 2.573
2.5 -5.28 59.97 -53.69 0.999
7.01 -2.10 54.50 -51.40 0.318
38.055 -0.17 20.02 -18.85 0.087

Mode 2
0.15 -2.367 11.092 -7.725 18.43
1 -2.253 9.644 -6.391 9.537
7.01 -2.188 6.994 -3.806 3.358
38.055

Mode 3
10 -1.010 8.840 -6.830 0.285
20 -0.611 8.243 -6.632 0.143
38.055 -0.341 7.594 -6.253 0.083

Mode 4
0.015 1.024 -0.001 -0.023 106

0.1 1.025 -0.002 -0.023 106

2 1.025 -0.002 -0.023 104

TABLE IV. Energy balance for Ha = 100

At Ha = 10 thermal dissipation dominates over the kinetic one already at the values of Pr corresponding to water-
based electrolytes, changing the nature of this instability. For high values of the Hartmann number (see Ha = 100 in
Table IV), buoyancy serves as the main destabilizing factor already at the values of Prandtl numbers corresponding
to liquid metals and is balanced by a strong magnetic field. The fluctuating kinetic energy contribution due to shear
of mean flow serves here as an additional stabilizing term, negligible at low and high values of Pr.

For the less dangerous Mode 2, corresponding to the formation of a loop, the ratio of kinetic to thermal dissipation
at its appearance (R > 1) confirms the dynamic origin of this mode. Here the kinetic fluctuating energy contribution
due to buoyancy serves as the main destabilizing factor for all values of Ha considered (Tables II-IV).

At the lowest values of Ha (see Ha = 0.02 in Table II, the energetic contribution due to shear of mean flow serves
as a secondary destabilizing factor, while for the higher values of Pr, at the range corresponding to Flibe, becomes
a negative stabilizing contribution. This corresponds to the sudden increase of thermal effects, with the thermal
dissipation dominating over the kinetic one (R < 1) for Pr & 10.

Very similar energy balance is observed at low and moderate values of the Hartmann number (see Ha = 10 in



17

Table III), with the additional stabilizing effects of low magnetic field and the thermal dissipation gaining importance
at slightly lower values of Pr, changing the nature of this instability at the values corresponding to water based
electrolytes. With the increase of the Hartmann number (see Ha = 100 in Table IV), more similarities between this
secondary instability (Mode 2) and the most unstable one (Mode 1) are observed. The energetic contribution due
to buoyancy serves as the main destabilizing term and is balanced by a strong stabilizing magnetic factors and a
stabilizing contribution due to shear of the basic flow.

The third mode of instability, corresponding to stretching of the marginal stability curve and appearing at higher
values of Ha and Pr (see Ha = 100 in Table IV) is of thermal origin, as indicated by the dissipation ratio R < 1. The
thermal dissipation dominates at the appearance of this mode and becomes stronger with the increase of Pr. In the
kinetic energy balance, the contribution due to buoyancy is again the only stabilizing factor, balanced by the strong
magnetic term and a weaker contribution corresponding to shear of the basic flow.

VI. CONCLUSIONS

Stability of buoyant MHD convective flow in a vertical channel owing to internal heat sources has been studied.
The Prandtl and Hartmann numbers have been varied in the wide range, which are relevant to fusion reactor blankets
and laboratory experiments. The results show that up to four different local minima may exist on the marginal
stability curve. For moderate magnetic field the leading instability has a mixed thermal-hydrodynamic origin and
is shifted towards the walls as both the Hartmann and Prandtl number increase. It is interesting that this mode is
highly damped by the magnetic field, which is somewhat surprising as the thermal effects are usually less damped
than the hydrodynamic ones (see e.g. Ref. 22). As the Hartmann number increases, the critical Grashof number
increases rapidly, so that the flow becomes very stable. However, the Hartmann mode, has also been discovered and
calculations for this mode have been performed with good accuracy up to Ha = 200. This, however, is sufficient as
the high−Ha asymptotics has been reached as clearly seen in Figure 13. It turns out that for Ha ∼ 1000 this mode,
shown in Figure 12c, becomes most unstable.

Concerning various fluids − liquid metals and electrolytes − the critical Grashof number varies between them by
orders of magnitude. Moreover, for flow visualization in the laboratory experiments on convection one should replace
the liquid metals with electrolytes with great caution as the instabilities in them may be of completely different origin.

Naturally, the next steps in the understanding of the effect of internal heat sources on the flow stability should
involve rectangular ducts with various thermal and electrical boundary conditions. For each of these combinations
the basic temperature and velocity profiles will be different and so will be the nature of the instabilities.

Finally, two points should be added. First of all, we do not exclude the possibility of the appearance of the elevator
modes, which have been discovered in many situations involving multiple vertical streams, see a brief review in Ref.
7. Secondly, extending the results to finite cavities with top and bottom lids should be done with caution as absolute
instability may set in24, which may lead to decay of convective instabilities and further breakup of wave-trains. These
issues require a separate investigation.
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