99 research outputs found

    Modelling historical and current irrigation water demand on the continental scale

    Get PDF
    Abstract. Water abstractions for irrigation purposes are higher than for any other pan-European water use sector and have a large influence on river runoff regimes. This modelling experiment assesses historic and current irrigation water demands for different crops in five arc minute spatial resolution for pan-Europe. Two different modelling frameworks have been applied in this study. First, soft-coupling the dynamic vegetation model LPJmL with the land use model LandSHIFT leads to overestimations of national irrigation water demands, which are rather high in the southern Mediterranean countries. This can be explained by unlimited water supply in the model structure and illegal or not gauged water abstractions in the reported data sets. The second modelling framework is WaterGAP3, which has an integrated conceptual crop specific irrigation module. Irrigation water requirements as modelled with WaterGAP3 feature a more realistic representation of pan-European water withdrawals. However, in colder humid regions, irrigation water demands are often underestimated. Additionally, a national database on crop-specific irrigated area and water withdrawal for all 42 countries within pan-Europe has been set up and integrated in both model frameworks

    When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil

    Get PDF
    Providing food and other products to a growing human population while safeguarding natural ecosystems and the provision of their services is a significant scientific, social and political challenge. With food demand likely to double over the next four decades, anthropization is already driving climate change and is the principal force behind species extinction, among other environmental impacts. The sustainable intensification of production on current agricultural lands has been suggested as a key solution to the competition for land between agriculture and natural ecosystems. However, few investigations have shown the extent to which these lands can meet projected demands while considering biophysical constraints. Here we investigate the improved use of existing agricultural lands and present insights into avoiding future competition for land. We focus on Brazil, a country projected to experience the largest increase in agricultural production over the next four decades and the richest nation in terrestrial carbon and biodiversity. Using various models and climatic datasets, we produced the first estimate of the carrying capacity of Brazil's 115 million hectares of cultivated pasturelands. We then investigated if the improved use of cultivated pasturelands would free enough land for the expansion of meat, crops, wood and biofuel, respecting biophysical constraints (i.e., terrain, climate) and including climate change impacts. We found that the current productivity of Brazilian cultivated pasturelands is 32–34% of its potential and that increasing productivity to 49–52% of the potential would suffice to meet demands for meat, crops, wood products and biofuels until at least 2040, without further conversion of natural ecosystems. As a result up to 14.3 Gt CO2 Eq could be mitigated. The fact that the country poised to undergo the largest expansion of agricultural production over the coming decades can do so without further conversion of natural habitats provokes the question whether the same can be true in other regional contexts and, ultimately, at the global scale

    Predicting the adaptive responses of biodiverse plant communities using functional trait evolution

    Get PDF
    Climate change consists of synergistic changes in a wide range of environmental conditions, characterized by elevated CO2, higher mean temperatures, and higher climate variability. While elevated CO2 concentrations may potentially increase the productivity of some ecosystems, it has been argued that nutrient limitation, increased respiration, and increased mortality may dampen or even negate these productivity gains. The capacity of global forests to adjust to such synergistic environmental changes depends on their functional diversity and the ecosystem’s adaptive capacity. The Plant-FATE eco-evolutionary model describes vegetation responses to altered environmental conditions, including CO2 concentrations, temperature, and water limitation. It represents functional diversity by modelling species as points in trait space and incorporates ecosystem adaptations at three levels: 1) to model acclimation of plastic traits of individual plants, we leverage the power of eco-evolutionary optimality principles, 2) to model shifts in species composition via demographic changes and species immigration, we implement a trait-size-structured demographic vegetation model, and 3) to model the long-term genetic evolution of species, we have developed new evolutionary theory for trait-size-structured communities. First, we show that with just a few calibrated parameters, the Plant-FATE model accurately predicts the fluxes of CO2 and water, size distributions, and trait distributions for a tropical wet site in the Amazon Forest. Second, we show that under elevated CO2 our model predictions are broadly consistent with observations, namely: an increase in leaf area, productivity and biomass, and a decrease in stomatal conductance and photosynthetic capacity. Third, we show that CO2 and nutrient fertilization both drive changes in community composition towards fast life-histories, and that competition drives the system in a direction opposite to what is optimal for individual plants. Our novel eco-evolutionary vegetation modelling framework combines optimality-based modelling for simulating biophysical acclimation, demographic modelling for community composition changes, and evolutionary dynamics for long-term adaptation. It thus opens a new path for predicting multi-timescale ecosystem dynamics and their responses to global change

    Asymmetric Dispersal and Colonization Success of Amazonian Plant-Ants Queens

    Get PDF
    The dispersal ability of queens is central to understanding ant life-history evolution, and plays a fundamental role in ant population and community dynamics, the maintenance of genetic diversity, and the spread of invasive ants. In tropical ecosystems, species from over 40 genera of ants establish colonies in the stems, hollow thorns, or leaf pouches of specialized plants. However, little is known about the relative dispersal ability of queens competing for access to the same host plants. We used empirical data and inverse modeling—a technique developed by plant ecologists to model seed dispersal—to quantify and compare the dispersal kernels of queens from three Amazonian ant species that compete for access to host-plants. We found that the modal colonization distance of queens varied 8-fold, with the generalist ant species (Crematogaster laevis) having a greater modal distance than two specialists (Pheidole minutula, Azteca sp.) that use the same host-plants. However, our results also suggest that queens of Azteca sp. have maximal distances that are four-sixteen times greater than those of its competitors. We found large differences between ant species in both the modal and maximal distance ant queens disperse to find vacant seedlings used to found new colonies. These differences could result from interspecific differences in queen body size, and hence wing musculature, or because queens differ in their ability to identify potential host plants while in flight. Our results provide support for one of the necessary conditions underlying several of the hypothesized mechanisms promoting coexistence in tropical plant-ants. They also suggest that for some ant species limited dispersal capability could pose a significant barrier to the rescue of populations in isolated forest fragments. Finally, we demonstrate that inverse models parameterized with field data are an excellent means of quantifying the dispersal of ant queens

    Análise situacional de comunidades extrativistas de castanha­-da-amazônia.

    Get PDF
    Resumo: A castanheira-da­-amazônia (Bertholletia excelsa Bonpl.) está presente em várias áreas do espaço amazônico brasileiro. Esses espaços possuem histórias de ocupação humana que se diferenciaram ao longo do tempo, conferindo diversidade de perfis socioeconômicos e formas de interação com a natureza no que se refere ao uso e à extração de recursos naturais. Com o objetivo de diagnosticar as tipologias de produção da castanha­&-da­-amazônia e o uso dos territórios por diferentes grupos sociais em estruturas fundiárias distintas na Amazônia brasileira, este capítulo apresenta o perfil de comunidades extrativistas onde o projeto de pesquisa ?Ecologia e genética da castanheira (Bertholletia excelsa Bonpl.) como subsídio à conservação e uso sustentável da espécie? realizou ações nos estados de Roraima, do Amazonas, do Pará e do Amapá.V.1 - Aspectos sociais, econômicos e organizacionais. ODS 2, ODS 8, ODS 10
    corecore