851 research outputs found

    Chiral and herringbone symmetry breaking in water-surface monolayers

    Get PDF
    We report the observation from monolayers of eicosanoic acid in the L′2 phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of their nearest neighbors. In this region we find a structural transition, which we tentatively identify as the rotator-herringbone transition L2d−L2h

    Central role of detachment faults in accretion of slow-spreading oceanic lithosphere

    Get PDF
    Author Posting. © Macmillan Publishers, 2008. This is the author's version of the work. It is posted here by permission of Macmillan Publishers for personal use, not for redistribution. The definitive version was published in Nature 455 (2008): 790-794, doi:10.1038/nature07333.The formation of oceanic detachment faults is well established from inactive, corrugated fault planes exposed on seafloor formed along ridges spreading at less than 80 km/My1-4. These faults can accommodate extension for up to 1-3 Myrs5, and are associated with one of two contrasting modes of accretion operating along the northern Mid-Atlantic Ridge (MAR). The first is symmetrical accretion, dominated by magmatic processes with subsidiary high-angle faulting and formation of abyssal hills on both flanks. The second is asymmetrical accretion involving an active detachment fault6 along one ridge flank. An examination of ~2500 km of the MAR between 12.5 and 35°N reveals asymmetrical accretion along almost half of the ridge. Hydrothermal activity identified to date in the study region is closely associated with asymmetrical accretion, which also exhibits high-levels of near continuous hydroacoustically and teleseismically recorded seismicity. Enhanced seismicity is probably generated along detachment faults accommodating a sizeable proportion of the total plate separation. In contrast, symmetrical segments have lower levels of seismicity, which concentrates primarily at their ends. Basalts erupted along asymmetrical segments have compositions that are consistent with crystallization at higher pressures than basalts from symmetrical segments, and with lower extents of partial melting of the mantle. Both seismic and geochemical evidence indicate that the axial lithosphere is thicker and colder at asymmetrical sections of the ridge, either because associated hydrothermal circulation efficiently penetrates to greater depths, or because the rising mantle is cooler. We suggest that much of the variability in seafloor morphology, seismicity and basalt chemistry found along slow-spreading ridges can be thus attributed to the frequent involvement of detachments in oceanic lithospheric accretion.Supported by CNRS (JE), NSF (DKS, HS, JC, CL and SE), WHOI (JE, DKS, HS and JC), Harvard University (JE, CL and SE), Univ. of Leeds (JC), and MIT (JE)

    Density-functional theory of elastically deformed finite metallic system: work function and surface stress

    Full text link
    The effect of external strain on surface properties of simple metals is considered within the modified stabilized jellium model. The equations for the stabilization energy of the deformed Wigner-Seitz cells are derived as a function of the bulk electron density and the given deformation. The results for surface stress and work function of aluminium calculated within the self-consistent Kohn-Sham method are also given. The problem of anisotropy of the work function of finite system is discussed. A clear explanation of independent experiments on stress-induced contact potential difference at metal surfaces is presented.Comment: 15 pages, 1 figur

    A xenon gas purity monitor for EXO

    Full text link
    We discuss the design, operation, and calibration of two versions of a xenon gas purity monitor (GPM) developed for the EXO double beta decay program. The devices are sensitive to concentrations of oxygen well below 1 ppb at an ambient gas pressure of one atmosphere or more. The theory of operation of the GPM is discussed along with the interactions of oxygen and other impurities with the GPM's tungsten filament. Lab tests and experiences in commissioning the EXO-200 double beta decay experiment are described. These devices can also be used on other noble gases.Comment: 41 pages, 26 figure

    Upcycling spent brewery grains through the production of carbon adsorbents: application to the removal of carbamazepine from water

    Get PDF
    Spent brewery grains, a by-product of the brewing process, were used as precursor of biochars and activated carbons to be applied to the removal of pharmaceuticals from water. Biochars were obtained by pyrolysis of the raw materials, while activated carbons were produced by adding a previous chemical activation step. The influence of using different precursors (from distinct fermentation processes), activating agents (potassium hydroxide, sodium hydroxide, and phosphoric acid), pyrolysis temperatures, and residence times was assessed. The adsorbents were physicochemically characterized and applied to the removal of the antiepileptic carbamazepine from water. Potassium hydroxide activation produced the materials with the most promising properties and adsorptive removals, with specific surface areas up to 1120 m2 g-1 and maximum adsorption capacities up to 190 ± 27 mg g-1 in ultrapure water. The adsorption capacity suffered a reduction of < 70% in wastewater, allowing to evaluate the impact of realistic matrices on the efficiency of the materials.publishe

    An Atomic-resolution nanomechanical mass sensor

    Full text link
    Mechanical resonators are widely used as inertial balances to detect small quantities of adsorbed mass through shifts in oscillation frequency[1]. Advances in lithography and materials synthesis have enabled the fabrication of nanoscale mechanical resonators[2, 3, 4, 5, 6], which have been operated as precision force[7], position[8, 9] and mass sensors[10, 11, 12, 13, 14, 15]. Here we demonstrate a room-temperature, carbon-nanotube-based nanomechanical resonator with atomic mass resolution. This device is essentially a mass spectrometer with a mass sensitivity of 1.3 times 10^-25 kg Hz^-1/2 or, equivalently, 0.40 gold atoms Hz^-1/2. Using this extreme mass sensitivity, we observe atomic mass shot noise, which is analogous to the electronic shot noise[16, 17] measured in many semiconductor experiments. Unlike traditional mass spectrometers, nanomechanical mass spectrometers do not require the potentially destructive ionization of the test sample, are more sensitive to large molecules, and could eventually be incorporated on a chip

    Molecular fluorescence above metallic gratings

    Get PDF
    P. Andrew and William L. Barnes, Physical Review B, Vol. 64, article 125405 (2001). "Copyright © 2001 by the American Physical Society."We present measurements of the fluorescence of emitters located in close proximity (d<λ) to metallic grating surfaces. By measuring both the spontaneous emission lifetime and angle-dependent radiation pattern of a monolayer of dye molecules as a function of their separation from planar and periodically corrugated mirrors of increasing modulation depth, we are able to examine the effect of varying the surface profile on the emission process. Both the distance dependence of the lifetime and the spatial distribution of the emitted light are significantly changed upon the introduction of a corrugation, quite apart from the appearance of the familiar Bragg-scattered bound-mode features. It is postulated that these perturbations arise from the interference of the grating scattered dipole fields with the usual upward propagating and reflected fields. In addition, the measurement of nonexponential decay transients for the deepest gratings examined provide evidence for the existence of optically dissimilar dipole positions above the grating surface

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Seroprevalence following the second wave of pandemic 2009 H1N1 influenza in Pittsburgh, PA, USA

    Get PDF
    Background: In April 2009, a new pandemic strain of influenza infected thousands of persons in Mexico and the United States and spread rapidly worldwide. During the ensuing summer months, cases ebbed in the Northern Hemisphere while the Southern Hemisphere experienced a typical influenza season dominated by the novel strain. In the fall, a second wave of pandemic H1N1 swept through the United States, peaking in most parts of the country by mid October and returning to baseline levels by early December. The objective was to determine the seroprevalence of antibodies against the pandemic 2009 H1N1 influenza strain by decade of birth among Pittsburgh-area residents. Methods and Findings: Anonymous blood samples were obtained from clinical laboratories and categorized by decade of birth from 1920-2009. Using hemagglutination-inhibition assays, approximately 100 samples per decade (n = 846) were tested from blood samples drawn on hospital and clinic patients in mid-November and early December 2009. Age specific seroprevalences against pandemic H1N1 (A/California/7/2009) were measured and compared to seroprevalences against H1N1 strains that had previously circulated in the population in 2007, 1957, and 1918. (A/Brisbane/59/2007, A/Denver/1/ 1957, and A/South Carolina/1/1918). Stored serum samples from healthy, young adults from 2008 were used as a control group (n = 100). Seroprevalences against pandemic 2009 H1N1 influenza varied by age group, with children age 10-19 years having the highest seroprevalence (45%), and persons age 70-79 years having the lowest (5%). The baseline seroprevalence among control samples from 18-24 year-olds was 6%. Overall seroprevalence against pandemic H1N1 across all age groups was approximately 21%. Conclusions: After the peak of the second wave of 2009 H1N1, HAI seroprevalence results suggest that 21% of persons in the Pittsburgh area had become infected and developed immunity. Extrapolating to the entire US population, we estimate that at least 63 million persons became infected in 2009. As was observed among clinical cases, this sero-epidemiological study revealed highest infection rates among school-age children. © 2010 Zimmer et al
    corecore