77 research outputs found

    The response of mild steel and armour steel plates to localised air-blast loading-comparison of numerical modelling techniques

    Get PDF
    This paper presents a comparative study of numerical, experimental and empirical techniques on the effect of localised air blast loads on mild steel and armour steel plates. The blast load effects on monolithic plates have been accounted for by using different approaches provided in the Finite Element hydrocode ABAQUS 6.13, namely an Eulerian Lagrangian and a Coupled Eulerian Lagrangian model. In the first model, the air and the explosive were modelled using multi-material Eulerian grids while the plate was modelled using a rigid Lagrangian mesh, while in the second model the rigid target was replaced with deformable plate. The transient deformation of the plate, strain localisation, pressure distribution on the plate have been investigated in the FE models, which have been validated against small scale experimental data for a limited range of charge sizes for both the mild steel and armoured steel. Despite the lower deflection of armour steel compared to mild steel plates, both plates were shown to undergo rupture upon similar charge mass and stand-off. For this purpose, a non-dimensional analysis was carried out with consideration of stand-off distance and slenderness ratio to predict the rupture impulse

    <inf>Blast response of aluminium/thermoplastic polyurethane sandwich panels – experimental work and numerical analysis</inf>

    Get PDF
    © 2019 Elsevier Ltd This article presents experimental and numerical results following blast tests on a polyether grade thermoplastic polyurethane (TPU). Aluminium alloy (AA) 2024-T3 skins were used as facings to enhance the blast resistance of sandwich structures with TPU cores and varying thicknesses. The experimental results highlighted an improvement in blast resistance with the addition of skins to the TPU core. Increasing the thickness of the TPU core in the sandwich panels served to increase the blast resistance of the structure. For example a 20 mm core offered a blast resistance that was 50.2% higher than an equivalent 5 mm core and 71.2% higher than a plain (i.e. no skin) 5 mm TPU core. Numerical simulations of the blast response of the TPU panels were conducted by converting the explosive loading regime applied to the panels to a simplified pressure pulse loading. Good agreement was obtained between the numerical and experimental results for the back face deflection profiles through the central cross-sections of the panels

    Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    Get PDF
    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification

    Experimental measurement of specific impulse distribution and transient deformation of plates subjected to near-field explosive blasts

    Get PDF
    The shock wave generated from a high explosive detonation can cause significant damage to any objects that it encounters, particularly those objects located close to the source of the explosion. Understanding blast wave development and accurately quantifying its effect on structural systems remains a considerable challenge to the scientific community. This paper presents a comprehensive experimental study into the loading acting on, and subsequent deformation of, targets subjected to near-field explosive detonations. Two experimental test series were conducted at the University of Sheffield (UoS), UK, and the University of Cape Town (UCT), South Africa, where blast load distributions using Hopkinson pressure bars and dynamic target deflections using digital image correlation were measured respectively. It is shown through conservation of momentum and Hopkinson-Cranz scaling that initial plate velocity profiles are directly proportional to the imparted impulse distribution, and that spatial variations in loading as a result of surface instabilities in the expanding detonation product cloud are significant enough to influence the transient displacement profile of a blast loaded plate

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1ÎČ, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1ÎČ innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    • 

    corecore