368 research outputs found

    Renal and vascular function in women with previous preeclampsia: A comparison of low- and high-degree proteinuria

    Get PDF
    The degree of proteinuria during preeclampsia has been considered to be a marker of severity of the disease and of endothelial dysfunction. The aim of the study was to assess whether the degree of proteinuria in preeclamptic pregnancy is related to impairment of vascular dilatation and/or kidney function years after the index pregnancy. Thirty women with a history of severe preeclampsia divided into low (n=8, dU-prot <5g/day) and high (n=22, dU-prot ≥5g/day) proteinuric groups and 21 women with previous normotensive pregnancy were studied 5–6 years after index pregnancy. Renal function and blood pressure were assessed together with venous occlusion plethysmography, where changes in brachial artery blood flow, induced by intra-arterial infusions of an endothelium-independent (sodium nitroprusside) and an endothelium-dependent (acetylcholine) vasodilator, were measured. The results showed similar renal function in all groups. There was no difference in vasodilation between preeclamptic groups and controls or correlation between degree of proteinuria during index pregnancy and present vasodilation. We conclude that the degree of proteinuria during preeclampsia does not predict vascular dilatation or renal function 5–6 years after preeclamptic pregnancy

    SpyTag/SpyCatcher display of influenza M2e peptide on norovirus-like particle provides stronger immunization than direct genetic fusion

    Get PDF
    IntroductionVirus-like particles (VLPs) are similar in size and shape to their respective viruses, but free of viral genetic material. This makes VLP-based vaccines incapable of causing infection, but still effective in mounting immune responses. Noro-VLPs consist of 180 copies of the VP1 capsid protein. The particle tolerates C-terminal fusion partners, and VP1 fused with a C-terminal SpyTag self-assembles into a VLP with SpyTag protruding from its surface, enabling conjugation of antigens via SpyCatcher.MethodsTo compare SpyCatcher-mediated coupling and direct peptide fusion in experimental vaccination, we genetically fused the ectodomain of influenza matrix-2 protein (M2e) directly on the C-terminus of norovirus VP1 capsid protein. VLPs decorated with SpyCatcher-M2e and VLPs with direct M2 efusion were used to immunize mice.Results and discussionWe found that direct genetic fusion of M2e on noro-VLP raised few M2e antibodies in the mouse model, presumably because the short linker positions the peptide between the protruding domains of noro-VLP, limiting its accessibility. On the other hand, adding aluminum hydroxide adjuvant to the previously described SpyCatcher-M2e-decorated noro-VLP vaccine gave a strong response against M2e. Surprisingly, simple SpyCatcher-fused M2e without VLP display also functioned as a potent immunogen, which suggests that the commonly used protein linker SpyCatcher-SpyTag may serve a second role as an activator of the immune system in vaccine preparations. Based on the measured anti-M2e antibodies and cellular responses, both SpyCatcher-M2e as well as M2e presented on the noro-VLP via SpyTag/Catcher show potential for the development of universal influenza vaccines

    Howard walnut trees can be brought into bearing without annual pruning

    Full text link
    In traditionally managed Howard walnut orchards, trees are pruned annually during the orchard development phase, an expensive operation in terms of labor and prunings disposal costs. Our observations and some prior research by others had suggested that pruning may not be necessary in walnut. In a trial of pruned and unpruned hedgerow trees over 8 years, beginning a year after planting, we documented canopy growth, tree height, yield and nut quality characteristics and also the effects of fruit removal. Pruning altered canopy shape but did not lead to increases in canopy development, yield or nut quality. Although fruit removal stimulated more vegetative growth in both the pruned and unpruned treatments, fruit removal did not result in an increase in midday canopy photosynthetically active radiation interception or cumulative yield when fruit removal was stopped after year 4. After 8 years, there were no significant differences in tree height, nut quality or cumulative yield among any of the treatments, which suggests that not pruning young Howard orchards could provide a net benefit to growers

    Island properties dominate species traits in determining plant colonizations in an archipelago system

    Get PDF
    The extrinsic determinants hypothesis emphasizes the essential role of environmental heterogeneity in species' colonization. Consequently, high resident species diversity can increase community susceptibility to colonizations because good habitats may support more species that are functionally similar to colonizers. On the other hand, colonization success is also likely to depend on species traits. We tested the relative importance of environmental characteristics and species traits in determining colonization success using census data of 587 vascular plant species collected about 70 yr apart from 471 islands in the archipelago of SW Finland. More specifically, we explored potential new colonization as a function of island properties (e.g. location, area, habitat diversity, number of resident species per unit area), species traits (e.g. plant height, life-form, dispersal vector, Ellenberg indicator values, association with human impact), and species' historical distributions (number of inhabited islands, nearest occurrence). Island properties and species' historical distributions were more effective than plant traits in explaining colonization outcomes. Contrary to the extrinsic determinants hypothesis, colonization success was neither associated with resident species diversity nor habitat diversity per se, although colonization was lowest on sparsely vegetated islands. Our findings lead us to propose that while plant traits related to dispersal and establishment may enhance colonization, predictions of plant colonizations primarily require understanding of habitat properties and species' historical distributions.Peer reviewe

    SpyTag/SpyCatcher display of influenza M2e peptide on norovirus-like particle provides stronger immunization than direct genetic fusion

    Get PDF
    Introduction: Virus-like particles (VLPs) are similar in size and shape to their respective viruses, but free of viral genetic material. This makes VLP-based vaccines incapable of causing infection, but still effective in mounting immune responses. Noro-VLPs consist of 180 copies of the VP1 capsid protein. The particle tolerates C-terminal fusion partners, and VP1 fused with a C-terminal SpyTag self-assembles into a VLP with SpyTag protruding from its surface, enabling conjugation of antigens via SpyCatcher. Methods: To compare SpyCatcher-mediated coupling and direct peptide fusion in experimental vaccination, we genetically fused the ectodomain of influenza matrix-2 protein (M2e) directly on the C-terminus of norovirus VP1 capsid protein. VLPs decorated with SpyCatcher-M2e and VLPs with direct M2 efusion were used to immunize mice. Results and discussion: We found that direct genetic fusion of M2e on noro-VLP raised few M2e antibodies in the mouse model, presumably because the short linker positions the peptide between the protruding domains of noro-VLP, limiting its accessibility. On the other hand, adding aluminum hydroxide adjuvant to the previously described SpyCatcher-M2e-decorated noro-VLP vaccine gave a strong response against M2e. Surprisingly, simple SpyCatcher-fused M2e without VLP display also functioned as a potent immunogen, which suggests that the commonly used protein linker SpyCatcher-SpyTag may serve a second role as an activator of the immune system in vaccine preparations. Based on the measured anti-M2e antibodies and cellular responses, both SpyCatcher-M2e as well as M2e presented on the noro-VLP via SpyTag/Catcher show potential for the development of universal influenza vaccines.Peer reviewe

    Modular vaccine platform based on the norovirus-like particle

    Get PDF
    BackgroundVirus-like particle (VLP) vaccines have recently emerged as a safe and effective alternative to conventional vaccine technologies. The strong immunogenic effects of VLPs can be harnessed for making vaccines against any pathogen by decorating VLPs with antigens from the pathogen. Producing the antigenic pathogen fragments and the VLP platform separately makes vaccine development rapid and convenient. Here we decorated the norovirus-like particle with two conserved influenza antigens and tested for the immunogenicity of the vaccine candidates in BALB/c mice.ResultsSpyTagged noro-VLP was expressed with high efficiency in insect cells and purified using industrially scalable methods. Like the native noro-VLP, SpyTagged noro-VLP is stable for months when refrigerated in a physiological buffer. The conserved influenza antigens were produced separately as SpyCatcher fusions in E. coli before covalent conjugation on the surface of noro-VLP. The noro-VLP had a high adjuvant effect, inducing high titers of antibody production against the antigens presented on its surface.ConclusionsThe modular noro-VLP vaccine platform presented here offers a rapid, convenient and safe method to present various soluble protein antigens to the immune system for vaccination and antibody production purposes.publishedVersionPeer reviewe
    corecore