449 research outputs found

    3D Position Tracking in Challenging Terrain

    Get PDF
    The intent of this paper is to show how the accuracy of 3D position tracking can be improved by considering rover locomotion in rough terrain as a holistic problem. An appropriate locomotion concept endowed with a controller min- imizing slip improves the climbing performance, the accuracy of odometry and the signal/noise ratio of the onboard sensors. Sensor fusion involving an inertial mea- surement unit, 3D-Odometry, and visual motion estimation is presented. The exper- imental results show clearly how each sensor contributes to increase the accuracy of the 3D pose estimation in rough terrain

    3D-Odometry for rough terrain - Towards real 3D navigation

    Get PDF
    Up to recently autonomous mobile robots were mostly designed to run within an indoor, yet partly structured and flat, environment. In rough terrain many problems arise and position tracking becomes more difficult. The robot has to deal with wheel slippage and large orientation changes. In this paper we will first present the recent developments on the off-road rover Shrimp. Then a new method, called 3D-Odometry, which extends the standard 2D odometry to the 3D space will be developed. Since it accounts for transitions, the 3D-Odometry provides better position estimates. It will certainly help to go towards real 3D navigation for outdoor robots

    Inertial and 3D-odometry fusion in rough terrain Towards real 3D navigation

    Get PDF
    Many algorithms related to localization need good pose prediction in order to produce accurate results. This is especially the case for data association algorithms, where false feature matches can lead to the localization system failure. In rough terrain, the field of view can vary significantly between two feature extraction steps, so a good position prediction is necessary to robustly track features. This paper presents a method for combining dead reckoning sensor information in order to provide an initial estimate of the six degrees of freedom of a rough terrain rover. An inertial navigation system (INS) and the wheel encoders are used as sensory inputs. The sensor fusion scheme is based on an extended information filter (EIF) and is extensible to any kind and number of sensors. In order to test the system, the rover has been driven on different kind of obstacles while computing both pure 3D-odometric and fused INS/3D-odometry trajectories. The results show that the use of the INS significantly improves the pose prediction

    SHELF-LIFE OF HALAL FRESH SLICED BEEF AND MINCED MEAT

    Get PDF
    Microbiological and chemical-physical characterization of Halal beef fresh and minced meat, vacuum-packaged and stored at +2°C and +8°C, were examined, at 0, 7, 14 and 21 days, to evaluate the shelf-life. Lactic Acid Bacteria and Coliforms were higher in samples stored at +8 °C, particularly in minced meat. Pseudomonas were the most prevalent flora in all the products, and the contamination level, above 4 log10 cfu/g, were reached at 7 days in all the samples and was maintained during the study. The shelf-life can be extended reducing the storage temperature (< +2°C), and improving the packaging conditions

    The Photon Dispersion as an Indicator for New Physics ?

    Full text link
    We first comment on the search for a deviation from the linear photon dispersion relation, in particular based on cosmic photons from Gamma Ray Bursts. Then we consider the non-commutative space as a theoretical concept that could lead to such a deviation, which would be a manifestation of Lorentz Invariance Violation. In particular we review a numerical study of pure U(1) gauge theory in a 4d non-commutative space. Starting from a finite lattice, we explore the phase diagram and the extrapolation to the continuum and infinite volume. These simultaneous limits - taken at fixed non-commutativity - lead to a phase of broken Poincare symmetry, where the photon appears to be IR stable, despite a negative IR divergence to one loop.Comment: 8 pages, 4 figures, talk presented at the VI International Workshop on the Dark Side of the Universe, Leon (Mexico), June 1-6, 2010. References adde

    Antioxidants Condition Pleiotropic Vascular Responses to Exogenous H2O2: Role of Modulation of Vascular TP Receptors and the Heme Oxygenase System

    Get PDF
    Aims: Hydrogen peroxide (H(2)O(2)), a nonradical oxidant, is employed to ascertain the role of redox mechanisms in regulation of vascular tone. Where both dilation and constriction have been reported, we examined the hypothesis that the ability of H(2)O(2) to effect vasoconstriction or dilation is conditioned by redox mechanisms and may be modulated by antioxidants. Results: Exogenous H(2)O(2) (0.1-10.0 μM), dose-dependently reduced the internal diameter of rat renal interlobular and 3rd-order mesenteric arteries (p\u3c0.05). This response was obliterated in arteries pretreated with antioxidants, including tempol, pegylated superoxide dismutase (PEG-SOD), butylated hydroxytoluene (BHT), and biliverdin (BV). However, as opposed to tempol or PEG-SOD, BHT & BV, antioxidants targeting radicals downstream of H(2)O(2), also uncovered vasodilation. Innovations: Redox-dependent vasoconstriction to H(2)O(2) was blocked by inhibitors of cyclooxygenase (COX) (indomethacin-10 μM), thromboxane (TP) synthase (CGS13080-10 μM), and TP receptor antagonist (SQ29548-1 μM). However, H(2)O(2) did not increase vascular thromboxane B(2) release; instead, it sensitized the vasculature to a TP agonist, U46619, an effect reversed by PEG-SOD. Antioxidant-conditioned dilatory response to H(2)O(2) was accompanied by enhanced vascular heme oxygenase (HO)-dependent carbon monoxide generation and was abolished by HO inhibitors or by HO-1 & 2 antisense oligodeoxynucleotides treatment of SD rats. Conclusions: These results demonstrate that H(2)O(2) has antioxidant-modifiable pleiotropic vascular effects, where constriction and dilation are brought about in the same vascular segment. H(2)O(2)-induced oxidative stress increases vascular TP sensitivity and predisposes these arterial segments to constrictor prostanoids. Conversely, vasodilation is reliant upon HO-derived products whose synthesis is stimulated only in the presence of antioxidants targeting radicals downstream of H(2)O(2)

    Environmental Modeling with Fingerprint Sequences for Topological Global Localization

    Get PDF
    In this paper a perception approach allowing for high distinctiveness is presented. The method works in accordance to the fingerprint concept. Such representation allows using a very flexible matching approach based on the minimum energy algorithm. The whole extraction and matching approach is presented in details and viewed in a topological optic, where the matching result can directly be used as observation function for a topological localization approach. The experimentation section will validate the fingerprint approach and present different set of experiments in order to explain practically the choice of different types of features

    High-Energy gamma-ray Astronomy and String Theory

    Full text link
    There have been observations, first from the MAGIC Telescope (July 2005) and quite recently (September 2008) from the FERMI Satellite Telescope, on non-simultaneous arrival of high-energy photons from distant celestial sources. In each case, the highest energy photons were delayed, as compared to their lower-energy counterparts. Although the astrophysics at the source of these energetic photons is still not understood, and such non simultaneous arrival might be due to non simultaneous emission as a result of conventional physics effects, nevertheless, rather surprisingly, the observed time delays can also fit excellently some scenarios in quantum gravity, predicting Lorentz violating space-time "foam" backgrounds with a non-trivial subluminal vacuum refractive index suppressed linearly by a quantum gravity scale of the order of the reduced Planck mass. In this pedagogical talk, I discuss the MAGIC and FERMI findings in this context and I argue on a theoretical model of space-time foam in string/brane theory that can accommodate the findings of those experiments in agreement with all other stringent tests of Lorentz invariance. However, I stress the current ambiguities/uncertainties on the source mechanisms, which need to be resolved first before definite conclusions are reached regarding quantum gravity foam scenarios.Comment: 34 pages latex, 12 eps figures incorporated, uses special macros. Based on invited plenary talk at DICE 2008 Conference (Castiglioncello, Italy), September 22-26 200

    Wheel torque control for a rough terrain rover

    Get PDF
    Navigating in rough terrain is a complex task that requires the robot to be considered as a holistic system. Algorithms, which don&#8217;t consider the physical dimensions and capabilities of the mobile robot lead to inefficient motion and suffer from a lack of robustness. A physical model of the robot is necessary for trajectory control. In this paper, quasi-static modeling of a six-wheeled robot with a passive suspension mechanism is presented together with a method for selecting the optimal torques considering the system constraints: maximal and minimal torques, positive normal forces. The aim of this method is to limit wheel slip and to improve climbing capabilities. The modeling and the optimization are applied to the Shrimp rover
    • …
    corecore