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Abstract 

Up to recently autonomous mobile robots were mostly 
designed to run within an indoor, yet partly structured 
and flat, environment. In rough terrain many problems 
arise and position tracking becomes more difficult. The 
robot has to deal with wheel slippage and large 
orientation changes. In this paper we will first present the 
recent developments on the off-road rover Shrimp. Then a 
new method, called 3D-Odometry, which extends the 
standard 2D odometry to the 3D space will be developed. 
Since it accounts for transitions, the 3D-Odometry 
provides better position estimates. It will certainly help to 
go towards real 3D navigation for outdoor robots. 

1. Introduction and motivation 

Keeping track of position is one of the most important 
tasks for an autonomous mobile robot. For example, tasks 
like path planning need good position estimation in order 
to work well. For rough terrain this task is much harder 
and requires the estimation of six degrees of freedom. A 
lot of research on ego-motion using different kinds of 
sensors has been done. A computation of displacements 
by tracking pixels from one image frame to another and 
considering the corresponding 3D points sets produced by 
stereovision can be found in [1] and [2]. An extension of 
shape-from-motion to omnidirectional cameras is 
presented in [3]. Because of the camera’s wide field of 
view and lack of degenerate motions, this method is more 
likely to produce robust motion estimates. The fusion of 
both inertial and visual cues can improve the motion 
estimation [4][5]. 

 

The methods presented above generally assume small 
displacements and angular changes between two 
acquisitions (feature tracking) and therefore limit their 
application to smooth environments and/or slow speeds. 
Furthermore, they generally fail when the images are 
underexposed or saturated because of reflection or direct 
sun exposure. In order to improve the robustness of the 
position tracking one has to fuse the data from different 
types of sensors, e.g. inertial, visual, proximity sensors 
and wheel encoders. 

 
Although odometry is widely used for indoor (2D), its 

application is limited for rough terrain (3D). The wheels 

are more likely to slip because of the rough structure of 
the soil and the error in position estimation grows quickly. 
A model of the wheel-soil interaction allows accounting 
for wheel slippage and limits the error growth. 
Nevertheless those models are generally complex and 
won’t give good results for every kind of terrain [6]. For 
these reasons, one generally avoids using odometry for 
rough terrain. One can look at the problem differently and 
ask: Why are the wheels slipping and how could we avoid 
this?  

 

There are two different aspects on which we can act 
directly. The first one is to improve the mechanical 
structure of the robot. Indeed, a good mechanical design 
allows the rover to move smoothly across the obstacles 
and therefore limits the wheel slippage. The second one is 
to focus on the wheel controllers. A good balance of the 
torques and speeds between the wheels is essential for 
optimizing the robot’s motion [7].  

 

The off-road rover we are using for this research is 
presented in section 2. Section 3 describes a new motion 
estimation method based on the wheels’ encoders called 
3D-Odometry. The experimental results are presented in 
section 4 and future work in section 5. 

 

2. System architecture 

The following sections present the latest developments 
on our research platform. We will first present the newly 
mounted sensors and then the software tools and 
architecture. 
 

2.1 Hardware architecture 

 
 

 
 

Figure 1. Profile views of the Shrimp's mechanical structure 

b) 

c)

a)

The front fork and the 
bogies are attached to the 
body with pin joints. They 
are shown in a) and c). 
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Our lab (Autonomous System Laboratory, ASL) 
developed an off-road rover called Shrimp which shows 
good climbing capabilities. Its passive and non-hyperstatic 
structure can adapt to a large range of obstacles and 
therefore allows to limit wheel slippage (see Fig. 1). It has 
six motorized wheels and is composed of four main parts: 
the body (on which the rear wheel is attached), the 
articulated front fork and the two side bogies. A detailed 
description of the mechanical design can be found in [8]. 

 
The control system is depicted in Fig. 2 and Fig. 3 shows 

an overview of the rover and the experimental setup. A 
lightweight laptop clocked at 600 MHz controls the whole 
system via three communication channels: two RS232 
serial ports (com1 and com2) and one IEEE 1394 bus. 
One can also exchange information with a host computer 
through an Ethernet link. The first serial link is used to 
interface an I2C bus on which different slave modules 
developed at ASL are attached. The robot has a motor 
controller module for each wheel, one servo controller for 
the steering of the front and back wheel and one angle 
sensor module for sensing the state of the bogies and the 
front fork relative to the body. The modules dedicated to 
the motors provide speed and position control (PID). 
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Figure 2. Overview of the Shrimp’s actuators and sensors 

 

In order to measure the angular rates and accelerations, 
we have mounted an IMU1 on the system. This unit also 
provides stabilized roll and pitch angles in static and 
dynamic conditions. In our application it is interfaced via 
the second serial communication port. Finally, stereo and 
panoramic images can be acquired through an IEEE1394 
bus. For the moment only the stereovision head2 has been 
mounted on the robot. 
                                                           

1 Inertial Measurement Unit, VG400CC-200 from Crossbow 
2 Stereo-vision module of type MEGA-D from Videre Design 

 

Figure 3. The Shrimp rover climbing a structured obstacle. (a) the 
stereovision module (b) the IMU (c) the laptop (d) the front wheel 
servo (e) the left bogie angle sensor 

 
 2.2 Software tools and architecture 

The whole software has been programmed in C and C++ 
and runs under Linux. However, substantial effort 
towards portability has been done by choosing cross-
platform components and libraries. The system is divided 
into three functional modules running as separate 
processes. We use the IPC messaging system developed at 
CMU for inter-process communication [9]. Fig 4. depicts 
the whole software architecture.  
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Figure 4. Layout of the IPC based distributed system 

 
The central server is responsible for routing the 

messages and holds the system-wide information (such as 
defined message prototypes). The ‘Onboard’ module is 
the main program. It runs on the rover’s computer and 
controls its hardware e.g. the actuators, the sensors and 
the IEEE1394 imagers. For controlling the rover through 
an ethernet link we have developed a dedicated module 
called ‘CtrGUI’. This graphical user interface allows the 
user to drive the rover based on the source images 
provided by the stereovision module. Finally Fig. 5 shows 
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two snapshots of the ‘Shrimp3D’ module. This module 
has been developed for visualizing and logging the data 
coming from the robot. It is based on the Open Inventor 
C++ library from Silicon Graphics that allows to easily 
manage the hierarchical transformations between the 3D 
objects in the scene e.g. the motion of the front fork and 
bogies relative to the body. All variables stored during the 
experiment can be plotted and analyzed in the variable 
browser shown in Fig. 5. This module is a precious tool 
for testing the system and the algorithms. 

 

 
 

Figure 5. Snapshot of the main Shrimp3D module window (left) 
and the variables browser (right). This user interface allows the 
user to visualize the experimental data. It displays the robot’s 
state, the elements of the scene and the computed trajectories. 
New objects are easily incorporated into the scene. The user can 
replay the experiment by handling the horizontal slider. All 
variables stored during the experiment can be plotted and 
analyzed in the variables browser. The user can choose a sample 
by means of the slider and the 3D scene is updated accordingly. 

3. 3D-Odometry 

The odometry is widely used for mobile robots moving 
on flat and even terrains. The equations are well known 
and allow estimating the position and the orientation of 
the robot (x, y, θ) in the plane. When the robot has to deal 
with ground slope changes, it is important to track the z 
coordinate also. The usual way to solve this issue is to add 
an inclinometer on the robot. This sensor provides the roll 
and pitch of the robot relative to gravity and allows to 
know the orientation of the plane on which the robot is 
currently traveling. Using this information and the 
standard 2D odometry equations it is possible to compute 
the 3D coordinates of the robot. This method, wich will 
be refered later as the standard method, works well under 
the assumption that the ground is relatively smooth and 
doesn’t have too many slope discontinuities. Indeed, the 
system accumulates errors during transitions because of 
the planar assumption. In rough terrain this assumption is 
not verified by definition and the transitions problem must 
be addressed properly. 

 
The main idea of the 3D-Odometry is to consider the 

displacement and the direction of motion of the wheels.  

3.1 Bogie displacement 

For the Shrimp we actually consider the translations of 
the left and right bogie. The following shows how to 
compute the displacement (δ and µ) knowing the 
translation of the wheels (encoder data ER, EF) and the 
change of the bogie angle (ε) between the initial and final 
state (see Fig. 6). The solutions provided by this method 
can be applied for any bogie design.  
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ER, EF : rear/front wheel displacement, norms of vectors RR’ and FF’ 
ρ, φ : rear/front wheel angle, direction of displacement 
R, F : initial rear/front wheel center 
R’, F’ : final rear/front wheel center  
C, C’ : initial/final state of the bogie center 
ε : angle change of the bogie (without pitch angle change) 
h : distance between the wheel centers 
δ : norm of the displacement, norm of vector CC’ 
δx, δy : x/y components of vector CC’ 
µ : direction of CC’, C’CD’ angle 
γr : EDD’ angle 
 

Figure 6. Bogie’s schematic and variables definition. 

 
Since the distance between the wheels remains constant 

we can write the following equations.  
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These equations can be solved analytically for 
φ and ρ (with the displacements ER, EF and the change of 
the bogie angle ε as parameters). Unfortunately, since 
three parameters are needed for estimating two values 
there is a dependency between them. For example, if ε is 
zero then ER must be equal to EF because of the constant 
wheels’ distance constraint. In practice, ER and EF can be 
different because they are provided by encoders and the 
wheels can slip and have different speeds. When such a 
case occurs we simply consider that the total bogie 
displacement is the average of the displacements of the 
two wheels.  



We now apply the sine theorem in the EDD’ triangle in 
order to find the equations for δx, δy and µ  in the bogie 
reference frame Obxy. 
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3.2 3D displacement 

The previous section showed how to find the translations 
of the bogies. Now the computation of the robot’s center 
displacement is presented (3D translation and yaw angle). 
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Figure 7. Main schematic for the 3D-Odometry 

 

The first step consists in expressing the δ's and µ's in the 
robot’s frame of reference (see previous section). ηr, ηl 

are the µ’s angles expressed in the robot’s reference 
frame. They define the planes πr, πl containing C’ and L’ 
(Eq. 5, 6). C’ and L’ are situated on circles centered in C 
and L with radius δr and δl in the planes πr and πl 
respectively. These considerations lead to the following 
equations:  
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We now make the approximation that the smallest 
displacement takes place in the bogie plane. In the 
example of Fig. 7, δr is smaller than δl therefore 'CC  is in 
the plane πb. This additional constraint is expressed by 
Eq. 9. Since the wheelbase b remains constant one can 
write Eq. 10. Finally, the vector 'OO  can be computed 
easily with Eq. 11. 
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Solving the system of nine equations with nine 
unknowns formed by Eq. 5 to 11 leads to the solutions 
for

→

'OC ,
→

'OL and
→

'OO (the nine unknowns). The yaw angle 
is computed with Equ. 12. The roll angle could also be 
computed but we use the value from the inclinometer 
since it is an absolute angle and therefore is not subject to 
error growth.  

 

4. Experimental results 

In order to test the equations presented above we drove 
the robot forward and computed the trajectory online with 
both our method and the standard method (see section 3). 
We set a proportional speed controller for the front 
bogies’ wheels and added an integral term for the rear 
wheels. This allows the front and back wheels to have 
slightly different speeds and therefore limits the slippage 
during the transitions. We tested with proportionnal 
integral controllers on both bogie wheels but the results 
produced were worse than the one presented next. 

 
The system has been tested in two different situations 

depicted in Fig. 10 (a) and (b) respectively. The true 
trajectory is an approximation. It is build with 
characteristic positions that can be easily computed 
knowing the shape of the obstacle, the geometrical model 
and the state of the robot.  

 
Fig. 8 shows the z-coordinate corrections during the 

transitions in experiment 1. There is a positive correction 
when the bogie’s first wheel starts climbing the obstacle 

b : distance between the bogies 
C, C’ : initial/final pos. of the right bogie
L, L’ : initial/final pos. of the left bogie 
O, O’ : initial/final position of the robot 
ηr, ηl : right/left displacement angles  
πr, πl : right/left planes 
nr, nl : normal vectors of πr, πl, // to Oxz 
πb : plane // to Oxz and containing C 



and a negative one for the convex transition. These 
corrections are not present in the standard method: this is 
the main difference between the two methods.  

 
Figure 8. z-coordinate correction during the transitions of the first 
experiment. For clarity purpose both Pitch and Bogie Angle curve 
have been scaled (by a factor of 12 and 8 respectively) 

 
The x and z coordinates of the robot’s final position have 

been measured for every run. We did five runs for each 
experiment and computed the relative error. Fig. 9 shows 
the results corresponding to both experiments. One can 
see that the 3D-Odometry demonstrates much better 
performance. The sharper the transitions are, the better it 
does in comparison with the standard method. The errors 
accumulated by the 3D-Odometry method are due to 
different reasons. The first one we might think about is 
the wheel slippage. In case of slippage the calculated 
distance would be bigger than the measured one and the 
results presented in Fig. 9 can be interpreted that way. 

 
Second experiment (1000 mm) 

Measured 3D-Odometry Std. method 
x z x z x z 

1010 1000 1012 5 1056 19 
… … … … … … 

Average error 0.2% 2.7% 5.5% 13.2% 
 

(a) 
 
 

First experiment (870 mm) 
Measured 3D-Odometry Std. method 

x z x z x z 
864 175 871 188 896 209 
873 175 876 187 904 210 
872 175 877 186 905 209 
875 175 878 185 908 208 
870 175 873 186 903 208 

Average error 0.5% 6.4% 3.7% 19.2% 
 

(b) 
Figure 9. Average relative errors for the second and first 
experiment. Only the first run and the errors are represented for 
the second experiment. The difference between the two methods 
grows for sharper transitions. 

 

However, slippage is not the biggest source of error in 
these experiments. We can see that the errors are mainly 
in the z direction and we are convinced that they are due 
to the sensors’ offsets and non-linearities. Although we 
corrected the bogies’ angle sensors for offsets we didn’t 
account for non linearities. A difference of one degree 
leads to an error of around 15 mm in the z direction for a 
870 mm horizontal motion. It is approximatively the 

  
 

  
(a)    (b) 



Figure 10. (a) First experiment. The robot starts in front of the obstacle, climbs a 35 degrees slope and stops on top after 870 mm in the x 
direction. The height of the obstacle is 175 mm. The transitions are relatively smooth for this experiment. (b) Second experiment. The robot 
goes over this 300 by 70 mm obstacle and stops after 1 meter. The transitions are sharp and since our method treats the transitions the 3D-
Odometry curve respects the obstacle shape.

height error for the first experiment. An appropriate 
calibration will certainly improve the results. Finally, 
variation of the wheels’ diameters and inaccuray in the 
mechanical dimensions are also factors of odometric 
errors. 

 
Nevertheless, the 3D-Odometry produces better results 

than the standard method in both experiments. 
Accounting for transitions improves the position 
estimation significantly. This is even more obvious when 
considering sharp transitions like in the second 
experiment. Since there are a lot of discontinuities in 
rough terrain this will help to provide usable odometric 
information. 

 

5. Future work 

We are currently developing an error model for the 3D-
Odometry which involves the creation of a 3D static 
model of the robot. The model will allow us to set a 
slippage probability which is inversely proportional to 
the normal forces on each wheel. Indeed, the less 
pressure on the tire, the more likely the wheel slips. This 
will also give a clue on how to correct for wheel 
diameter changes due to tyre compression. 

 
We are also working on the low level trajectory 

controller for the robot. A good distribution of wheel 
speeds and torques based on the information provided by 
the model and the sensors allow optimizing the robot’s 
motion. This reduces the wheel slippage, the overall 
energy consumption and increases the robot’s climbing 
performances. We are investigating the use of torque 
control instead of speed control for the wheels. 

 
As mentioned in the introduction, robust position 

tracking must integrate different types of sensors. For 
this reason we will fuse the motion information provided 
by the IMU, the stereovision system, the omnicam, and 
the odometry. Until now most of the applications 
integrate only two sensors e.g inertial and standard 
vision, inertial and stereovision, or odometry and vision.  

 

6. Conclusion 

Navigating in rough terrain is a complex task which 
requires the robot to be considered as a whole system. 
The quality of the odometry strongly depends on the 
mechanical design and the trajectory controller of the 
robot. Minimizing slippage not only limits odometric 
errors but also increases motion efficiency. 

 
Thanks the passive and non-hyperstatic structure of 

Shrimp, odometric motion estimation can be used in 
rough terrain. It has been shown, that considering 
transitions significantly improves position estimates. 
Especially when the robot is overcoming sharp-shaped 
obstacles. Finally, the 3D-Odometry should expand the 
range of speed and surface roughness over which the 
rover should be able to go and keep track of its position. 
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