
3D-Odometry for rough terrain – Towards real 3D navigation

Pierre Lamon and Roland Siegwart

Swiss Federal Institute of Technology, Lausanne (EPFL)
Pierre.Lamon@epfl.ch, Roland.Siegwart@epfl.ch

Abstract

Up to recently autonomous mobile robots were mostly
designed to run within an indoor, yet partly structured
and flat, environment. In rough terrain many problems
arise and position tracking becomes more difficult. The
robot has to deal with wheel slippage and large
orientation changes. In this paper we will first present the
recent developments on the off-road rover Shrimp. Then a
new method, called 3D-Odometry, which extends the
standard 2D odometry to the 3D space will be developed.
Since it accounts for transitions, the 3D-Odometry
provides better position estimates. It will certainly help to
go towards real 3D navigation for outdoor robots.

1. Introduction and motivation

Keeping track of position is one of the most important
tasks for an autonomous mobile robot. For example, tasks
like path planning need good position estimation in order
to work well. For rough terrain this task is much harder
and requires the estimation of six degrees of freedom. A
lot of research on ego-motion using different kinds of
sensors has been done. A computation of displacements
by tracking pixels from one image frame to another and
considering the corresponding 3D points sets produced by
stereovision can be found in [1] and [2]. An extension of
shape-from-motion to omnidirectional cameras is
presented in [3]. Because of the camera’s wide field of
view and lack of degenerate motions, this method is more
likely to produce robust motion estimates. The fusion of
both inertial and visual cues can improve the motion
estimation [4][5].

The methods presented above generally assume small
displacements and angular changes between two
acquisitions (feature tracking) and therefore limit their
application to smooth environments and/or slow speeds.
Furthermore, they generally fail when the images are
underexposed or saturated because of reflection or direct
sun exposure. In order to improve the robustness of the
position tracking one has to fuse the data from different
types of sensors, e.g. inertial, visual, proximity sensors
and wheel encoders.

Although odometry is widely used for indoor (2D), its

application is limited for rough terrain (3D). The wheels

are more likely to slip because of the rough structure of
the soil and the error in position estimation grows quickly.
A model of the wheel-soil interaction allows accounting
for wheel slippage and limits the error growth.
Nevertheless those models are generally complex and
won’t give good results for every kind of terrain [6]. For
these reasons, one generally avoids using odometry for
rough terrain. One can look at the problem differently and
ask: Why are the wheels slipping and how could we avoid
this?

There are two different aspects on which we can act
directly. The first one is to improve the mechanical
structure of the robot. Indeed, a good mechanical design
allows the rover to move smoothly across the obstacles
and therefore limits the wheel slippage. The second one is
to focus on the wheel controllers. A good balance of the
torques and speeds between the wheels is essential for
optimizing the robot’s motion [7].

The off-road rover we are using for this research is
presented in section 2. Section 3 describes a new motion
estimation method based on the wheels’ encoders called
3D-Odometry. The experimental results are presented in
section 4 and future work in section 5.

2. System architecture

The following sections present the latest developments
on our research platform. We will first present the newly
mounted sensors and then the software tools and
architecture.

2.1 Hardware architecture

Figure 1. Profile views of the Shrimp's mechanical structure

b)

c)

a)

The front fork and the
bogies are attached to the
body with pin joints. They
are shown in a) and c).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147923138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Our lab (Autonomous System Laboratory, ASL)
developed an off-road rover called Shrimp which shows
good climbing capabilities. Its passive and non-hyperstatic
structure can adapt to a large range of obstacles and
therefore allows to limit wheel slippage (see Fig. 1). It has
six motorized wheels and is composed of four main parts:
the body (on which the rear wheel is attached), the
articulated front fork and the two side bogies. A detailed
description of the mechanical design can be found in [8].

The control system is depicted in Fig. 2 and Fig. 3 shows

an overview of the rover and the experimental setup. A
lightweight laptop clocked at 600 MHz controls the whole
system via three communication channels: two RS232
serial ports (com1 and com2) and one IEEE 1394 bus.
One can also exchange information with a host computer
through an Ethernet link. The first serial link is used to
interface an I2C bus on which different slave modules
developed at ASL are attached. The robot has a motor
controller module for each wheel, one servo controller for
the steering of the front and back wheel and one angle
sensor module for sensing the state of the bogies and the
front fork relative to the body. The modules dedicated to
the motors provide speed and position control (PID).

I2C module

Motor0 ctrl.

I2C module

Servos ctrl.

I2C module

Angle sensor

Serial unit

IMU

Converter
Serial/I2C

FireW. slave

Stereo−vision

FireW. slave

Omnicam

I2C module

Motor5 ctrl.

IEEE 1394

com1

com2

ethernet
or wireless ethernet

laptop

Figure 2. Overview of the Shrimp’s actuators and sensors

In order to measure the angular rates and accelerations,
we have mounted an IMU1 on the system. This unit also
provides stabilized roll and pitch angles in static and
dynamic conditions. In our application it is interfaced via
the second serial communication port. Finally, stereo and
panoramic images can be acquired through an IEEE1394
bus. For the moment only the stereovision head2 has been
mounted on the robot.

1 Inertial Measurement Unit, VG400CC-200 from Crossbow
2 Stereo-vision module of type MEGA-D from Videre Design

Figure 3. The Shrimp rover climbing a structured obstacle. (a) the
stereovision module (b) the IMU (c) the laptop (d) the front wheel
servo (e) the left bogie angle sensor

 2.2 Software tools and architecture

The whole software has been programmed in C and C++
and runs under Linux. However, substantial effort
towards portability has been done by choosing cross-
platform components and libraries. The system is divided
into three functional modules running as separate
processes. We use the IPC messaging system developed at
CMU for inter-process communication [9]. Fig 4. depicts
the whole software architecture.

Central
Server

Onboard
module

Shrimp3D
module

CtrGUI
module

onboard computer

host computer
Figure 4. Layout of the IPC based distributed system

The central server is responsible for routing the

messages and holds the system-wide information (such as
defined message prototypes). The ‘Onboard’ module is
the main program. It runs on the rover’s computer and
controls its hardware e.g. the actuators, the sensors and
the IEEE1394 imagers. For controlling the rover through
an ethernet link we have developed a dedicated module
called ‘CtrGUI’. This graphical user interface allows the
user to drive the rover based on the source images
provided by the stereovision module. Finally Fig. 5 shows

b

a

e
c

d

two snapshots of the ‘Shrimp3D’ module. This module
has been developed for visualizing and logging the data
coming from the robot. It is based on the Open Inventor
C++ library from Silicon Graphics that allows to easily
manage the hierarchical transformations between the 3D
objects in the scene e.g. the motion of the front fork and
bogies relative to the body. All variables stored during the
experiment can be plotted and analyzed in the variable
browser shown in Fig. 5. This module is a precious tool
for testing the system and the algorithms.

Figure 5. Snapshot of the main Shrimp3D module window (left)
and the variables browser (right). This user interface allows the
user to visualize the experimental data. It displays the robot’s
state, the elements of the scene and the computed trajectories.
New objects are easily incorporated into the scene. The user can
replay the experiment by handling the horizontal slider. All
variables stored during the experiment can be plotted and
analyzed in the variables browser. The user can choose a sample
by means of the slider and the 3D scene is updated accordingly.

3. 3D-Odometry

The odometry is widely used for mobile robots moving
on flat and even terrains. The equations are well known
and allow estimating the position and the orientation of
the robot (x, y, θ) in the plane. When the robot has to deal
with ground slope changes, it is important to track the z
coordinate also. The usual way to solve this issue is to add
an inclinometer on the robot. This sensor provides the roll
and pitch of the robot relative to gravity and allows to
know the orientation of the plane on which the robot is
currently traveling. Using this information and the
standard 2D odometry equations it is possible to compute
the 3D coordinates of the robot. This method, wich will
be refered later as the standard method, works well under
the assumption that the ground is relatively smooth and
doesn’t have too many slope discontinuities. Indeed, the
system accumulates errors during transitions because of
the planar assumption. In rough terrain this assumption is
not verified by definition and the transitions problem must
be addressed properly.

The main idea of the 3D-Odometry is to consider the

displacement and the direction of motion of the wheels.

3.1 Bogie displacement

For the Shrimp we actually consider the translations of
the left and right bogie. The following shows how to
compute the displacement (δ and µ) knowing the
translation of the wheels (encoder data ER, EF) and the
change of the bogie angle (ε) between the initial and final
state (see Fig. 6). The solutions provided by this method
can be applied for any bogie design.

ε

ER

EF

R F EFx

EFy

ERx

ERy

δ

R’

F’

x

φ

ρ

ρ
γr y

C
C’

D’

D

µ

E

Ob

ER, EF : rear/front wheel displacement, norms of vectors RR’ and FF’
ρ, φ : rear/front wheel angle, direction of displacement
R, F : initial rear/front wheel center
R’, F’ : final rear/front wheel center
C, C’ : initial/final state of the bogie center
ε : angle change of the bogie (without pitch angle change)
h : distance between the wheel centers
δ : norm of the displacement, norm of vector CC’
δx, δy : x/y components of vector CC’
µ : direction of CC’, C’CD’ angle
γr : EDD’ angle

Figure 6. Bogie’s schematic and variables definition.

Since the distance between the wheels remains constant

we can write the following equations.

FFFRRRRF '''' ++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−

⋅
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅
⋅

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)sin(
)cos(

)sin(
)cos(

)sin(
)cos(

0 φ
φ

ε
ε

ρ
ρ

EF
EF

h
h

ER
ERh

 (1)

These equations can be solved analytically for
φ and ρ (with the displacements ER, EF and the change of
the bogie angle ε as parameters). Unfortunately, since
three parameters are needed for estimating two values
there is a dependency between them. For example, if ε is
zero then ER must be equal to EF because of the constant
wheels’ distance constraint. In practice, ER and EF can be
different because they are provided by encoders and the
wheels can slip and have different speeds. When such a
case occurs we simply consider that the total bogie
displacement is the average of the displacements of the
two wheels.

We now apply the sine theorem in the EDD’ triangle in
order to find the equations for δx, δy and µ in the bogie
reference frame Obxy.

)cos(
2 21 εδ ⎟

⎠
⎞

⎜
⎝
⎛ −+= thtx (2)

)sin(
2 2 εδ ⎟

⎠
⎞

⎜
⎝
⎛ −= thy (3) ⎟

⎠
⎞

⎜
⎝
⎛=

x
y

δ
δµ arctan (4)

where
2)sin(

)sin(
1

hERt r −
⋅

=
ε

γ
 and

)sin(
)sin(

2 ε
ρ⋅

=
ERt

3.2 3D displacement

The previous section showed how to find the translations
of the bogies. Now the computation of the robot’s center
displacement is presented (3D translation and yaw angle).

(xr , yr, zr)

(x0, y0, z0)

(xl, yl, zl)

π l

π r

δr

lδ

πb

b/2

b/2

C

L

C’

O

η

nr

nl

O’

YZ

X

L’

r

η l

Figure 7. Main schematic for the 3D-Odometry

The first step consists in expressing the δ's and µ's in the
robot’s frame of reference (see previous section). ηr, ηl

are the µ’s angles expressed in the robot’s reference
frame. They define the planes πr, πl containing C’ and L’
(Eq. 5, 6). C’ and L’ are situated on circles centered in C
and L with radius δr and δl in the planes πr and πl
respectively. These considerations lead to the following
equations:

 0'=⋅CCnr (5) 0'=⋅ LLnl (6)

 2
2

22

2 rrrr zbyx +⎟
⎠
⎞

⎜
⎝
⎛ ++=δ (7)

2

2
22

2 llll zbyx +⎟
⎠
⎞

⎜
⎝
⎛ −+=δ (8)

We now make the approximation that the smallest
displacement takes place in the bogie plane. In the
example of Fig. 7, δr is smaller than δl therefore 'CC is in
the plane πb. This additional constraint is expressed by
Eq. 9. Since the wheelbase b remains constant one can
write Eq. 10. Finally, the vector 'OO can be computed
easily with Eq. 11.

2222
2

2 rrrr zyxb
++=+⎟

⎠
⎞

⎜
⎝
⎛ δ (9)

() () ()2222
rlrlrl zzyyxxb −+−+−= (10)

2
'''' LCOCOO += (11)

b
xx

Yaw lr −
= (12)

Solving the system of nine equations with nine
unknowns formed by Eq. 5 to 11 leads to the solutions
for

→

'OC ,
→

'OL and
→

'OO (the nine unknowns). The yaw angle
is computed with Equ. 12. The roll angle could also be
computed but we use the value from the inclinometer
since it is an absolute angle and therefore is not subject to
error growth.

4. Experimental results

In order to test the equations presented above we drove
the robot forward and computed the trajectory online with
both our method and the standard method (see section 3).
We set a proportional speed controller for the front
bogies’ wheels and added an integral term for the rear
wheels. This allows the front and back wheels to have
slightly different speeds and therefore limits the slippage
during the transitions. We tested with proportionnal
integral controllers on both bogie wheels but the results
produced were worse than the one presented next.

The system has been tested in two different situations

depicted in Fig. 10 (a) and (b) respectively. The true
trajectory is an approximation. It is build with
characteristic positions that can be easily computed
knowing the shape of the obstacle, the geometrical model
and the state of the robot.

Fig. 8 shows the z-coordinate corrections during the

transitions in experiment 1. There is a positive correction
when the bogie’s first wheel starts climbing the obstacle

b : distance between the bogies
C, C’ : initial/final pos. of the right bogie
L, L’ : initial/final pos. of the left bogie
O, O’ : initial/final position of the robot
ηr, ηl : right/left displacement angles
πr, πl : right/left planes
nr, nl : normal vectors of πr, πl, // to Oxz
πb : plane // to Oxz and containing C

and a negative one for the convex transition. These
corrections are not present in the standard method: this is
the main difference between the two methods.

Figure 8. z-coordinate correction during the transitions of the first
experiment. For clarity purpose both Pitch and Bogie Angle curve
have been scaled (by a factor of 12 and 8 respectively)

The x and z coordinates of the robot’s final position have

been measured for every run. We did five runs for each
experiment and computed the relative error. Fig. 9 shows
the results corresponding to both experiments. One can
see that the 3D-Odometry demonstrates much better
performance. The sharper the transitions are, the better it
does in comparison with the standard method. The errors
accumulated by the 3D-Odometry method are due to
different reasons. The first one we might think about is
the wheel slippage. In case of slippage the calculated
distance would be bigger than the measured one and the
results presented in Fig. 9 can be interpreted that way.

Second experiment (1000 mm)

Measured 3D-Odometry Std. method
x z x z x z

1010 1000 1012 5 1056 19
… … … … … …

Average error 0.2% 2.7% 5.5% 13.2%

(a)

First experiment (870 mm)
Measured 3D-Odometry Std. method

x z x z x z
864 175 871 188 896 209
873 175 876 187 904 210
872 175 877 186 905 209
875 175 878 185 908 208
870 175 873 186 903 208

Average error 0.5% 6.4% 3.7% 19.2%

(b)
Figure 9. Average relative errors for the second and first
experiment. Only the first run and the errors are represented for
the second experiment. The difference between the two methods
grows for sharper transitions.

However, slippage is not the biggest source of error in
these experiments. We can see that the errors are mainly
in the z direction and we are convinced that they are due
to the sensors’ offsets and non-linearities. Although we
corrected the bogies’ angle sensors for offsets we didn’t
account for non linearities. A difference of one degree
leads to an error of around 15 mm in the z direction for a
870 mm horizontal motion. It is approximatively the

(a) (b)

Figure 10. (a) First experiment. The robot starts in front of the obstacle, climbs a 35 degrees slope and stops on top after 870 mm in the x
direction. The height of the obstacle is 175 mm. The transitions are relatively smooth for this experiment. (b) Second experiment. The robot
goes over this 300 by 70 mm obstacle and stops after 1 meter. The transitions are sharp and since our method treats the transitions the 3D-
Odometry curve respects the obstacle shape.

height error for the first experiment. An appropriate
calibration will certainly improve the results. Finally,
variation of the wheels’ diameters and inaccuray in the
mechanical dimensions are also factors of odometric
errors.

Nevertheless, the 3D-Odometry produces better results

than the standard method in both experiments.
Accounting for transitions improves the position
estimation significantly. This is even more obvious when
considering sharp transitions like in the second
experiment. Since there are a lot of discontinuities in
rough terrain this will help to provide usable odometric
information.

5. Future work

We are currently developing an error model for the 3D-
Odometry which involves the creation of a 3D static
model of the robot. The model will allow us to set a
slippage probability which is inversely proportional to
the normal forces on each wheel. Indeed, the less
pressure on the tire, the more likely the wheel slips. This
will also give a clue on how to correct for wheel
diameter changes due to tyre compression.

We are also working on the low level trajectory

controller for the robot. A good distribution of wheel
speeds and torques based on the information provided by
the model and the sensors allow optimizing the robot’s
motion. This reduces the wheel slippage, the overall
energy consumption and increases the robot’s climbing
performances. We are investigating the use of torque
control instead of speed control for the wheels.

As mentioned in the introduction, robust position

tracking must integrate different types of sensors. For
this reason we will fuse the motion information provided
by the IMU, the stereovision system, the omnicam, and
the odometry. Until now most of the applications
integrate only two sensors e.g inertial and standard
vision, inertial and stereovision, or odometry and vision.

6. Conclusion

Navigating in rough terrain is a complex task which
requires the robot to be considered as a whole system.
The quality of the odometry strongly depends on the
mechanical design and the trajectory controller of the
robot. Minimizing slippage not only limits odometric
errors but also increases motion efficiency.

Thanks the passive and non-hyperstatic structure of

Shrimp, odometric motion estimation can be used in
rough terrain. It has been shown, that considering
transitions significantly improves position estimates.
Especially when the robot is overcoming sharp-shaped
obstacles. Finally, the 3D-Odometry should expand the
range of speed and surface roughness over which the
rover should be able to go and keep track of its position.

ACKNOWLEDGEMENTS

The author would like to thank Stéphane Michaud,
Daniel Burnier, Grégoire Terrien and Ralph Piguet for
their help with the test bed vehicle. This project has been
funded by the EPFL’s research council and the ESA
Solero project.

REFERENCES
[1] A. Mallet, S. Lacroix, and L. Gallo, "Position estimation in outdoor

environments using pixel tracking and stereovision", In
International Conference on Robotics and Automation, pages
3519-3524, San Francisco, CA (USA), April 2000.

[2] Olson C.F., Matthies L.H., Schoppers M., Maimone M.W., "Stereo
ego-motion improvements for robust rover navigation", IEEE
International Conference on Robotics and Automation,
Proceedings, ICRA 01, Vol. 2, 2001.

[3] Strelow D., Mishler J., Singh S., Herman H., "Extending shape-
from-motion to noncentral onmidirectional cameras", IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Proceedings, Vol. 4 , 2001.

[4] Vieville T., Romann F., Hotz B., Mathieu H., Buffa M., Robert L.,
Facao P.E.D.S., Faugeras O.D., Audren J.T., "Autonomous
navigation of a mobile robot using inertial and visual cues",
IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS '93, Proceedings, Vol. 1, 1993.

[5] Roumeliotis S.I, Johnson A.E., Montgomery J.F., “Augmenting
inertial navigation with image-based motion estimation”, ICRA '02.
IEEE International Conference on Robotics and Automation,
Proceedings, Vol. 4, Page(s): 4326 –4333, 2002.

[6] Andrade G., Amar F.B., Bidaud P., Chatila R., “Modeling robot-soil
interaction for planetary rover motion control”, IEEE/RSJ
International Conference on Intelligent Robots and Systems,
Proceedings, Vol. 1, Page(s): 576 –581, 1998.

[7] Iagnemma, K., Shibly, H., Rzepniewski, A., and Dubowsky, S.,
"Planning and Control Algorithms for Enhanced Rough-Terrain
Rover Mobility," Proceedings of the Sixth International
Symposium on Artificial Intelligence, Robotics and Automation in
Space, i-SAIRAS, 2001.

[8] Siegwart R., Lamon P., Estier T., Lauria M., Piguet R., “Innovative
design for wheeled locomotion in rough terrain”, Journal of
Robotics and Autonomous Systems, Elsevier, vol 40/2-3 p151-162.

[9] www-2.cs.cmu.edu/afs/cs/project/TCA/www/ipc/index.html

[10] E. T. Baumgartner, H. Aghazarian, A. Trebi-Ollennu, T. L.
Huntsberger, M. S. Garrett, "State Estimation and Vehicle

Localization for the FIDO Rover", Sensor Fusion and
Decentralized Control in Autonomous Robotic Systems III, SPIE
Proc. Vol. 4196, Boston, MA, November 2000.

[11] Singh S., Simmons R., Smith T., Stentz A., Verma V., Yahja A.,
Schwehr K., “Recent Progress in Local and Global Traversability
for Planetary Rovers”, In International Conference on Robotics
and Automation, p1194-1200, San Francisco, April 2000.

