
Inertial and 3D-odometry fusion in rough terrain 
– Towards real 3D navigation 

P. Lamon, R. Siegwart 
Swiss Federal Institute of technology (EPFL) 

Lausanne, Switzerland 
pierre.lamon@epfl.ch, roland.siegwart@epfl.ch 

 
 

Abstract—Many algorithms related to localization need good 
pose prediction in order to produce accurate results. This is 
especially the case for data association algorithms, where 
false feature matches can lead to the localization system 
failure. In rough terrain, the field of view can vary 
significantly between two feature extraction steps, so a good 
position prediction is necessary to robustly track features. 
This paper presents a method for combining dead reckoning 
sensor information in order to provide an initial estimate of 
the six degrees of freedom of a rough terrain rover. An 
inertial navigation system (INS) and the wheel encoders are 
used as sensory inputs. The sensor fusion scheme is based on 
an extended information filter (EIF) and is extensible to any 
kind and number of sensors. In order to test the system, the 
rover has been driven on different kind of obstacles while 
computing both pure 3D-odometric and fused INS/3D-
odometry trajectories. The results show that the use of the 
INS significantly improves the pose prediction. 
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I. INTRODUCTION 
A good pose estimate is essential for an autonomous 

mobile robot because position is used by most of the 
navigation tasks and algorithms running onboard. The first 
step of localization consists in the integration of high 
frequency dead reckoning sensors to predict vehicle 
location. The second phase uses some form of absolute 
sensing mechanism for extracting relevant features in the 
environment and reset the position prediction. One of the 
big challenges of this update is to find correspondences 
between the current and previously extracted landmarks 
and features. This task needs good pose prediction in order 
to provide reliable results and limit false matches. This 
requirement is even more important when the robot travels 
on a cluttered terrain, where the field of view can vary 
significantly between two features extraction steps. 

The Inertial Navigation Systems (INS1) provide direct 
measurements of the dynamic of the system and are self-
contained. For these reasons they are used in many 
applications for predicting the robot’s position and 
orientation during the first localization step. The INS were 
first used in aerospace applications and a large part of the 
literature refers to them. The availability of low-cost solid-
state sensors allowed using INS for ground applications 
                                                           
1 An INS is generally composed of a triad of accelerometers (velocity 
rate sensors) and gyroscopes (angular rate sensors)  

such as road vehicle and mobile robots. Nevertheless, these 
sensors provide less accurate position information and their 
implementation on ground vehicles is more difficult. 
Indeed, trajectories are less smooth on the ground where 
the system has to deal with chocks and more vibrations. 

Many research works are related to road vehicles 
applications where INS are used to provide higher update 
rate of the position between two consecutive GPS data 
acquisition. Furthermore, they can also be used for 
estimating the wheel diameter changes and the vehicle 
sideslip [1,2]. Barshan and Durrant-Whyte [3] showed that 
low-cost INS can improve the system performance and can 
be applied to mobile robotics if an accurate sensor model is 
provided. A method for combining data from gyroscopes 
and odometry is presented in [4]. Scheding and al. [5] 
present interesting results for an underground mining 
vehicle. They show clearly how inertial sensors can be 
used to correct for non-systematic errors due to soil 
irregularities when fused with other sensors such as wheel 
encoders and laser scanners. 

However, most of the published works show results in 
two dimensions and deal with the estimation of the planar 
position and orientation only. Furthermore, the target 
environment is generally flat and the structure of the soil 
can be known beforehand. This allows developing 
relatively accurate vehicle models, which lead to good 
odometric information.  

The intent of this paper is to propose a method for 
combing 3D-odometric and inertial information in order to 
provide a robust three-dimensional initial estimate of the 
six degrees of freedom of a rough terrain rover. This 
method, based on an extended information filter, is 
presented in section three. Section two shortly describes the 
rover used for the experiments and the applied 3D-
odometry method. Section four presents the experimental 
results, validating the theory. Finally, sections five and six 
will present ongoing research and conclude the paper. 

II. BACKGROUND 

A. The rough terrain rover 
The Autonomous System Lab (at EPFL) developed a 

six-wheeled off-road rover called Shrimp, which shows 
excellent climbing capabilities thanks its passive 
mechanical structure. The most recent prototype is depicted 
in Fig. 1 and a detailed description can be found in [6]. 
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Figure 1.  A picture of the latest prototype, called Solero. The inertial 
navigation system is hidden in the rover’s body and therefore is not 
visible. (a) steering servo mechanism, the same is used for the rear 
wheel (b) passively articulated bogie and spring suspended front fork 
(all equipped with absolute angular sensors) (c) one of the 6 motorized 
wheels (with encoders, speed, torque and position control capabilities) 
(d) omnidirectional vision system (e) stereo-vision module, orientable 
around the tilt axis (f) main computation unit 

This rover can intrinsically adapt to a large range of 
obstacles and therefore can move smoothly across rough 
terrain. This behavior has many advantages when dealing 
with onboard sensors. In particular, it allows limited wheel 
slip and vibration. The quality of the odometric information 
and the ratio signal/noise for the inertial sensors are 
significantly improved in comparison with rigid structures 
such as four-wheel drive rovers. Thus, both odometry and 
INS integration techniques can be accounted for position 
estimation. 

B. 3D-odometry 
Although odometry is widely used indoors (2D), its 

application is limited in rough terrain (3D) because the 
wheels are more likely to slip and the position error can 
grow quickly. The 3D-odometry extends the standard (2D) 
odometry to the three-dimensional space and is described 
thoroughtfully in [7]. This technique computes the position 
increments (dx, dy, dz) and the orientation (dψ) of the robot 
from the bogie wheel encoders, an inclinometer and the 
bogies angular sensors. Because it accounts for ground 
slope discontinuities, this method produces much better 
estimates than the standard method on uneven terrain. 
However, the 3D-odometry still assumes no-slip and is 
therefore subject to performance loss in very cluttered 
terrains. The experimental results show that the INS allows 
correcting accidental and non-systematic errors, which 
significantly improves the position estimate. 

III. PROBABILISTIC SENSOR FUSION SCHEME 
For this application an extended information filter (EIF) 

is used for combining the information coming from the 3D-
odometry and the inertial unit. This formulation of the 
Kalman filter has interesting features. Its mathematical 
expression is well suited for implementing a distributed 
sensor fusion scheme and allows to easily extending the 

system to any kind and number of sensors [8]. Fig. 2 
depicts the schematics of the fusion process. 

 

Figure 2.  The EIF sensor fusion scheme, easily extendable to more 
sensors. The INS is divided into two logical sensors: an inclinometer and 
an inertial measurement unit. When the robot is stopped, at time ks, the 
ZUP (Zero Update Position) becomes active. This allows guarantying 
fast convergence of the INS biases and no drift while the robot is stopped 

The information state vector and the information matrix are 
updated according to: 
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where the set S = {imu, inc, odo/zup} and 

 for the linear filter, otherwise 
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The inverse covariance and the information state vector are 
predicted as: 
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Finally the state vector may be obtained from: 
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A. The sensor models 
For each sensor the matrices Hj and Rj (with j ∈ S) must 

be defined. The measurement models Hj will be presented 
in this section while the content of the covariance matrices 
Rj will be discussed in the experimental results section. 

1) The inertial unit model: The position, velocity and 
attitude can be computed by integrating the readings from 
the INS. However, both accelerometers and gyros can be 
influenced by bias errors. Even if these errors are small 
they will cause an unbounded growth in the error of 
integrated measurements. The velocity and the attitude 
error will diverge proportionally over time and the 
position to the square of time. The accelerometers 
measurements are thus modeled as: 
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ΓWR is the rotation matrix that transforms values 
expressed in the world-fixed coordinates system W into the 
robot’s coordinates system R (see Fig. 1). This matrix is a 
function of the angles φ (roll), θ (pitch) and ψ (yaw). The 
b’s and ν’s are the biases and the white measurements 
noises respectively. Because the variations of measurement 
of the z-gyro can be large, the scaling error ∆ωz has been 
added to the model. 

The equations (5) and (7) are non-linear and the first 
order Taylor expansion is used to provide: 
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where the bars denotes operating point values and g is 
the gravitational constant, which has to be removed before 
integrating the accelerations. The Himu matrix can be 
constructed using (6), (8), (9). The Hinc matrix is the identity 
matrix because the inclinometer directly measures φ and θ. 

Because the INS is not placed exactly at the center of the 
robot, it is subject to centripetal accelerations due to the 
angular rates. They have to be subtracted from the 
measurements in order to consider the accelerations related 
to the center of the robot, which is used as the reference 
point by all the other sensors. The centripetal contribution 
ci for each accelerometer is: 
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where ri is the position of each accelerometer i with 
respect to the center of the robot. 

2) The odometry measurement model: The robot used 
for this research is a skid-steered rover and the natural and 
controlled motion is in the forward direction. Thus, the 
errors due to wheel slip and wheel diameters variations 
have much more effect in the x-z plane than along the y 
direction. Therefore, scaling errors (∆οx and ∆οz) have been 
introduced only for the x and z-axes: 
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where the ν’s are the white measurements noises. The 
Hodo matrix is obtained using the first order Taylor 
decomposition of (11). 

B. The state prediction model 
The state prediction model is of the form: 
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The accelerations, angular rates, biases and scaling errors 
are changing randomly depending on the motion 
commands, time and other non-modeled parameters. 
However, they cannot be considered as pure white noise 
because they are highly time correlated. Instead they can 
be modeled as first order Gauss-Markov processes whose 
auto-correlation function is: 
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where 1/τ is the correlation time and σ2 the variance of the 
process. Such a process can also be considered as a low 
pass filter, with τ being the time constant. The discrete 
functions of the first and second integral of such a process 
can be easily computed using the inverse Laplace 
operator. They are developed in the following equation: 
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where x2 and x3 are respectively the first and second 
integral of the Gauss-Markov process x1 and h is the 
sampling time. The covariance matrix Q is then derived by 
computing the expectations E{xi xj} with i, j = 1 .. 3. 

Thus, because the accelerations, biases and scaling errors 
are modeled as Gauss-Markov processes, one can write: 
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where diag(a,b,c) refers to a diagonal matrix composed of 
the elements a, b and c. 

The derivation of Fω is more tedious because the 
dynamic of xω is non-linear. Furthermore, the small-angle 
approximation cannot be made because the robot is subject 



to move on rough terrain, where the angular variations can 
be of high amplitude2. Equation (16) describes the non-
linear state transition of xω: 
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The linearized 6x6 matrix Fω can then be obtained by 
computing the Jacobians of the f’s functions and including 
the terms for the angular rates.  

Despite the large dimension of the state vector, the state 
prediction computation can be done online with a non-
optimized code (less than 1ms on a 666MHz processor). 

IV. EXPERIMENTAL RESULTS 
The rover depicted in section II is equipped with a 

VG400-CC inertial measurement unit from Crossbow. It is 
a six-axis measurement system designed to measure linear 
accelerations and rotation rates along/around three 
orthogonal axes. Furthermore, it includes a digital signal 
processor running a Kalman filter for directly estimating 
the roll and pitch angles in both static and dynamic 
conditions. For the sensor fusion scheme this unit is 
divided into two logical sensors (see Fig. 2). One is 
considered as an inclinometer and the other provides 
angular rates and accelerations measurements. 
 

A. Setting the Q matrix 
The values in Q are difficult to set because they are 

based on the knowledge of the system and the operating 
conditions. It is not possible to measure these values 
because they can vary significantly during locomotion in 
rough terrain. However, some simple rules can be applied 
for guessing how the parameters are related to each other. 
Furthermore, taking some margin on the variances 
estimations will allow accounting for a larger range of 
situations. The INS provides direct measurements of the 
dynamic of the system and updates the state vector 
frequently. Thus, the datasheet of the sensor can be used 
for setting some of the state transition model parameters. 
They are presented in Table I together with some 
comments on how they have been selected. 

TABLE I.  PARAMETERS FOR THE STATE TRANSITION MODEL 
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The biases are changing slower than 
the accelerations over time. Thus, 
their time constants are set smaller. 

                                                           
2 The propagation of the Euler angles with time is fully developed in [9]. 
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The experiments showed that these 
values should be set larger than the 
one prescribed in the INS datasheet. 
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in the INS datasheet. 
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They have been determined 
experimentally; the final results are 
not very sensitive to them. 

 

B. Setting the Rj matrices 
In order to set the variances for the INS sensor, the rover 

has been driven along a straight trajectory at different 
velocities and on different types of soil while collecting 
statistics. The experiments showed that the variances don’t 
change significantly upon velocity and terrain type. This is 
thanks the passive mechanical structure of Solero. Finally, 
the worst-case set of variances has been selected for Rimu 
and Rinc. 

The sensor model for the odometry is much more tedious 
to assess because the robot is subject to drive across all 
kind of terrain and soil such as sand, rock and grass. It is 
very difficult to classify all types of terrain and 
configurations and to associate the corresponding 
variances. Instead, we set the uncertainty of the odometric 
information being proportional to the acceleration 
undergone by the rover. Indeed, slip mostly occurs in 
rough terrain during obstacle overcoming, while the robot 
is subject to accelerations. Furthermore, at constant speed, 
the acceleration is zero and thus does not bring much 
information. In this case, the position estimation can rely 
only on odometry. For the same reasons, the variance for 
the yaw angle has been set proportional to the angular rate. 
Thus, the Rodo matrix can be written as: 

T
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where ΓRW  is the transformation matrix converting 
quantities from the robot frame into the world frame and 
the matrix CR: 
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kx, ky, kz and kψ are constants set empirically and  gx, gy 
and gz are the gravitational components in the rover-fixed 
frame. kx and kz have been set larger than ky because Solero 
is a skid-steered rover: the motion commands affect the x-z  
position, y is not directly controllable. This set of constants 
has been tested and validated during the experiments 
performed on different types of terrains. 



C. Experimental validation 
In order to test the sensor fusion method, the robot has 

been driven forward across different experimental setups 
during a fixed interval of time. Then the pure 3D-odometry 
and filtered trajectories have been compared. By filtered 
trajectory we mean the trajectory build out of the position 
estimates computed by the EIF filter. We have repeated the 
same experiment several times and measured the final 
position of the robot for each run. 
 

 

Figure 3.  Picture of one of the experimental setups along with the 
corresponding 3D model used for analysing the results. Because the 
dimensions of the obstacles are known, we can measure precisely the 
true maximal and final position heights. In this case the maximal 
height is 135mm and the final height is 45mm. That kind of obstacle 
is very difficult to negociate for a wheeled rover because of the sharp 
edges and the low friction coefficient. 

Fig. 3 depicts the most difficult obstacle configuration 
the rover has been faced to during the experiments. 
Because of a low friction coefficient between the wheels 
and the obstacle, a lot of slip occurs during the step 
climbing. Furthermore, the robot literally bounces on the 
ground when the rear bogie wheels go down from the 
obstacle. The raw x and z-accelerometer signals are plotted 
in Fig. 4. The shocks occurring during the experiment are 
easily identified when looking at the z-accelerometer plot. 

 

 

Figure 4.  The raw x and z-accelerometer signals. The amplitude of the 
accelerations can reach values higher than 1g (a) front bogie wheels 

climbing on the obstacle (b) rear bogie wheels climbing (c) front bogie 
wheels going down the obstacle (d) rear bogie wheels going down. 

Table II reports the final measurements together with the 
relative position errors. The third run, highlighted in the 
table, will be used as example for the next two figures. 

TABLE II.  EXPERIMENTAL MEASUREMENTS 

Experimental values (mm) 
Measured 3D-odometry only Filtered 

x y z x y z x y z 
1020 4 45 1150 88 40 1160 17 44 
1025 7 45 1149 66 40 1152 38 40 
1030 5 45 1182 58 38 1184 18 44 
1030 2 45 1149 31 33 1150 29 34 
1025 1 45 1152 35 36 1152 16 37 
Average error 13% 1771% 17% 13% 776% 11% 

 

 

The relative error along the x-axis is the same for both 
the 3D-odometry and the filtered trajectories. This result 
can be explained: it is because wheel slip mainly occurs 
when the robot starts climbing the obstacle at constant 
speed, while the trajectory is smooth. During this phase, 
the accelerometers don’t detect velocity change and 
therefore can’t help correcting the position. On the other 
hand, when the rover goes down the obstacle, the z-
accelerometer information allows correcting the trajectory 
and the relative error along the z-axis is only 11% instead 
17%. Fig. 5 depicts this correction nicely. For all the 
experiments the filtered final z-coordinate is always closer 
to the true height of  45mm. 

 

 
Figure 5.  The z trajectories for the third run (see Table II). The ellipses 

(a) and (b) show the correction occuring when the front, respectively 
rear, bogie wheels go down from the step. 

The error in the y-direction is mostly due to the heading 
(yaw) error occurring during asymmetric wheels slip. The 
odometry is very sensitive to this effect and the yaw 
estimation can vary significantly even for small slip. Fig. 6 
shows how the yaw gyro helps correcting the heading. The 
result is a fair diminution of the relative error along the y-
axis (see Table II). 

 

 

Figure 6.  The yaw angles estimates for the third run (the true final 
angle is close to zero). The yaw gyroscope (measuring the angular rate 

around z) allows correcting for asymmetric slip. 

a 

b 

a b d c 



The errors along the x-axis being the same, it is 
interesting to consider the absolute errors in the y-z plane. 
Fig. 7 shows that the final positions computed with the 
sensor fusion algorithm are systematically closer to the true 
position than the pure 3D-odometry estimations. 

 
Figure 7.  Errors in the y-z plane. The triangles represent the filtered 

values and the circles, the pure 3D-odometry estimations. 

For testing the system in a more general case, the rover 
has been driven twenty times across the scene depicted in 
Fig. 8. Each time, the operator remote controlled the rover 
in order to close the loop. For each run, the final error of 
the filtered trajectory was smaller than the pure-odometry. 

 

Figure 8.  Comparison between pure odometry (a) and filtered trajectory 
(b). The final error [εx, εy, εz, εψ] (in meters and degrees) is respectively 

[0.16, 0.142, 0.014, 18°] and [0.06, 0.029, 0.012, 1.2°] for this run. 

V. FUTURE WORK 
In order to reduce errors due to wheel slip, a quasi-static 

model of Solero together with a torque-optimization 
method that minimize slip have been developed [10]. The 
simulations show promising results and the system is ready 
to be implemented on the rover for real testing. This type 
of control is better than the speed control currently 
implemented on the rover because it is based on the 
physical model of the rover. It should not only minimize 
odometric error but also reduce the overall energy 
consumption and increase the robot’s climbing 
performance. 

After the prediction phase, the localization phase consists 
in extracting specific features in the environment and 
corrects the position prediction. For this purpose, the visual 
motion estimation method presented in [11] will be used 
together with the interest point-matching algorithm 
developed in [12, 13]. When fed with a good initial pose 
estimate, the visual motion estimation algorithm produces 
better matches and results, especially in rough terrain. This 
new source of motion information will be easily integrated 
into the system thanks the versatile sensor fusion scheme. 

VI. CONCLUSION 
In this paper, a method for combining dead reckoning 

sensor information in order to provide an initial estimate of 
the six degrees of freedom of an off-road rover has been 
presented. The experimental results showed that the inertial 
navigation system helped to correct odometric errors and 
significantly improved the pose estimate; especially when 
the robot is overcoming sharp-shaped obstacles. 

A good initial pose estimate helps the localization 
algorithms to provide accurate position information. Thus, 
this work should allow expanding the range of speed and 
surface roughness over which the rover should be able to 
go and keep track of its position. It will certainly help to go 
towards real 3D navigation for outdoor robots. 
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