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Summary. The intent of this paper is to show how the accuracy of 3D position
tracking can be improved by considering rover locomotion in rough terrain as a
holistic problem. An appropriate locomotion concept endowed with a controller min-
imizing slip improves the climbing performance, the accuracy of odometry and the
signal/noise ratio of the onboard sensors. Sensor fusion involving an inertial mea-
surement unit, 3D-Odometry, and visual motion estimation is presented. The exper-
imental results show clearly how each sensor contributes to increase the accuracy of
the 3D pose estimation in rough terrain.

1 Introduction

In order to acquire knowledge about the environment, a mobile robot uses
different types of sensors, which are error prone and whose measurements
are uncertain. In office-like environments, the interpretation of this data is
facilitated thanks to the numerous assumptions that can be formulated e.g.
the soil is flat, the walls are perpendicular to the ground, etc. In natural scenes,
the problem is much more tedious because of limited a priori knowledge about
the environment and the difficulty of perception. In rough terrain, the change
in lighting conditions can strongly affect the quality of the acquired images
and the vibrations due to uneven soils lead to noisy sensor signals. When
the robot is overcoming an obstacle, the field of view can change significantly
between two data acquisitions, increasing the difficulty of tracking features in
the scene.

To get a robust estimate of the robots position, the measurements acquired
by several complementary sensors have to be fused accounting for their relative
variance. In the literature, the localization task generally involves two types
of sensors and is divided into two phases a) the first step consists in the inte-
gration of a high frequency dead reckoning sensor to predict vehicle location
b) the second phase, which is usually activated at a much slower rate, uses
an absolute sensing mechanism for extracting relevant features in the envi-
ronment and updating the predicted position. In [1], an inertial measurement
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unit is used for the prediction and an omnicam is used as the exteroceptive
sensor. The pair of sensors composed of an inertial measurement unit and a
GPS is used in [2]. Even if sensor fusion can be applied to combine the mea-
surements acquired by any number of sensors, most of the applications found
in the literature generally use only two types of sensors and only the 2D case
is considered (even for terrestrial rovers).

In challenging environments, the six degrees of freedom of the rover have
to be estimated (3D case) and the selection of sensors must be done care-
fully because of the aformentioned difficulties of perception in rough terrain.
However, the accuracy of the position estimates does not only depend on the
quality and quantity of sensors mounted onboard but also on the specific lo-
comotion characteristics of the rover and the way it is driven. Indeed, the
sensor signals might not be usable if an unadapted chassis and controller are
used in challenging terrain. For example, the ratio signal/noise is poor for
an inertial measurement unit mounted on a four-wheel drive rover with stiff
suspensions. Furthermore, odometry provides bad estimates if the controller
does not include wheel-slip minimization or if the kinematics of the rover is
not accounted for.

The intent of this paper is to show how the accuracy of 3D position tracking
can be improved by considering rover locomotion in rough terrain as a holistic
problem. Section 2 describes the robotic platform developed for conducting
this research. In Sect. 3, a method for computing 3D motion increments based
on the wheel encoders and state sensors is presented. Because it accounts for
the kinematics of the rover, this method provides better results than the
standard method. Section 4 proposes a new approach for slip-minimization
in rough terrain. Using this controller, both the climbing performance of the
rover and the accuracy of the odometry are improved. Section 5 presents
the results of the sensor fusion using 3D-Odometry, an Inertial Measurement
Unit (IMU) and Visual Motion Estimation based on stereovision (VME). The
experiments show clearly how each sensor contributes to increase the accuracy
and robustness of the 3D pose estimation. Finally, Sect. 6 concludes this paper.

2 Research platform

The Autonomous System Lab (at EPFL) developed a six-wheeled off-road
rover called Shrimp, which shows excellent climbing capabilities thanks its
passive mechanical structure [3]. The most recent prototype, called SOLERO,
has been equipped with sensors and more computational power (see Fig. 1).
The parallel architecture of the bogies and the spring suspended fork provide a
high ground clearance while keeping all six motorized wheels in ground-contact
at any time. This ensures excellent climbing capabilities over obstacles up to
two times the wheel diameter and an excellent adaptation to all kinds of ter-
rains. The ability to move smoothly across rough terrain has many advantages
when dealing with onboard sensors: for example, it allows limited wheel slip
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and reduces vibration. The quality of the odometric information and the ratio
signal/noise for the inertial sensors are significantly improved in comparison
with rigid structures such as four-wheel drive rovers. Thus, both odometry
and INS integration techniques can be accounted for position estimation.
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Fig. 1: Sensors, actuators and electronics of SOLERO. a) steering servo mechanism
b) passively articulated bogie and spring suspended front fork (equipped with an-
gular sensors) c) 6 motorized wheels (DC motors) d) omnidirectional vision system
e) stereo-vision module, orientable around the tilt axis f) laptop (used for image
processing) g) low power pc104 (used for sensor fusion) h) energy management
board i) batteries (NiMh 7000 mAh) j) I2C slave modules (motor controllers, angu-
lar sensor module, servo controllers etc.) k) IMU (provides also roll and pitch)

3 3D-Odometry

Odometry is widely used to track the position and the orientation ([x, y, ψ]T )
of a robot in a plane π. This vector is updated by integrating small motion
increments between two subsequent robot poses. This 2D odometry method
can be extended in order to account for slope changes in the environment and
to estimate the 3D position in a global coordinate system i.e. [x, y, z, φ, θ, ψ]T .
This technique uses typically an inclinometer for estimating the roll (φ) and
pitch (θ) angles relative to the gravity field [4]. Thus, the orientation of the
plane π, on which the robot is currently moving, can be estimated. The, z
coordinate is computed by projecting the robot displacements in π into the
global coordinate system. This method, which will be referred later as the
standard method, works well under the assumption that the ground is relatively
smooth and does not have too many slope discontinuities. Indeed, the system
accumulates errors during transitions because of the planar assumption. In
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rough terrain, this assumption is not verified and the transitions problem
must be addressed properly. This section briefly describes a new method,
called 3D-Odometry, which takes the kinematics of the robot into account
and treats the slope discontinuity problem. The main reference frames and
some of the variables used for 3D-Odometry are introduced in Fig. 2
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Fig. 2: Reference frames definition

The norm ∆ and the direction of motion η of each bogie can be computed
by considering the kinematics of the bogie, the incremental displacement of the
Rear/Front bogie wheels (wheel encoders) and the angular change of the bogie
(angular sensor) between two data acquisition cycles. Then, the displacement
of the robot’s center O, i.e. [x, y, z, ψ]T , can be computed using ∆ and η of
the left and the right bogie, whereas the attitude [φ, θ]T is directly given by
the inclinometer1.

Experimental results

The robot has been driven across obstacles of known shape and the trajectory
computed online with both 3D-Odometry and the standard method. In all the
experiments, the 3D-Odometry produced much better results than the stan-
dard method because the approach accounts for the kinematics of the rover.
The difference between the two techniques becomes bigger as the difficulty of
the obstacles increases (see Fig. 3). In Fig. 4, an experiment testing the full
3D capability of the method is depicted. The position error at the goal is only
εx = 1.4%, εy = 2%, εz = 2.8%, εψ = 4% for a total path length of around 2m.

SOLERO has a non-hyperstatic mechanical structure that yields a smooth
trajectory in rough terrain. As a consequence wheel slip is intrinsically mini-
mized. When combined with 3D-Odometry, such a design allows to use odom-
1 The reader can refer to the original paper [5] for more details about 3D-Odometry.

In particular, the method also computes the wheel-ground contact angles.
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etry as a mean to track the rover’s position in rough terrain. Moreover, the
quality of odometry can still be significantly improved using a ”smart” con-
troller minimizing wheel slip. Its description is presented in the next section.

Fig. 3: Sharp edges experiment

(b)

(a)

Only the right bogie wheels climbed obstacle

(a). Then, the rover has been driven over

obstacle (b) (with an incident angle of

approximatively 20◦)

Fig. 4: Full 3D experiment

4 Wheel slip minimization

For wheeled rovers, the motion optimization is somewhat related to mini-
mizing wheel slip. Minimizing slip not only limits odometric error but also
increases the robot’s climbing performance and efficiency. In order to fulfill
this goal, several methods have been developed.

Methods derived from the Anti-lock Breaking System can be used for
rough terrain rovers. Because they adapt the wheel speeds when slip already
occurred, they are referred to as reactive approaches. A velocity synchroniza-
tion algorithm, which minimizes the effect of the wheels fighting each other,
has been implemented on the NASA FIDO rover [6]. The first step of the
method consists in detecting which of the wheels are deviating significantly
from the nominal velocity profile. Then a voting scheme is used to compute
the required velocity set point change for each individual wheel. However, per-
formance might be improved by considering the physical model of the rover
and wheel-soil interaction models for a specific type of soil. Thus, the traction
of each wheel is optimized considering the load distribution on the wheels and
the soil properties. Such approaches are referred to as predictive approaches.

In [7], wheel-slip limitation is obtained by minimizing the ratio T/N for
each wheel, where T is the traction force and N the normal force. Reference [8]
proposes a method minimizing slip ratios and thus avoid soil failure due to ex-
cessive traction. These physics-based controllers assume that the parameters
of the wheel-ground interaction models are known. However, these parameters
are difficult to estimate and are valid only for a specific type of soil and condi-
tion. Reference [9] proposes a method for estimating the soil parameters as the
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robot moves, but it is limited to a rigid wheel travelling through deformable
terrain. In practice, the rover wheels are subject to roll on different kind of
soils, whose parameters can change quickly. Thus, physics-based controllers
are sensitive to soil parameters variation and difficult to implement on real
rovers. In this section, a predictive approach considering the load distribu-
tion on the wheels and which does not require complex wheel-soil interaction
models is presented. More details about the controller can be found in [10].

Quasi-static model

The speed of an autonomous rover is limited in rough terrain because the nav-
igation algorithms are computationally expensive (limited processing power)
and for safety reasons. In this range of speeds, typically smaller than 20cm/s,
the dynamic forces might be neglected and a quasi-static model is appropri-
ate. To develop such a model, the mobility analysis of the rover’s mechanical
structure has to be done. It ensures to produce a consistent physical model
with the appropriate degrees of freedom at each joints. Then the forces are
introduced and the equilibrium equations are written for each part composing
the rover’s chassis. Because we have no interest in implicitly calculating the
internal forces of the system, it is possible to reduce this set of independent
equations. The variables of interest are the 3 ground contact forces on the
front and the back wheel, the 2 ground contact forces on each wheel of the
bogies and the 6 wheel torques. This makes 20 unknowns of interest and the
system can be reduced to 15 equations. This leads to the following equation

M15x20 · U20x1 = R15x1 (1)

where M is the model matrix depending on the geometric parameters and
the state of the robot, U a vector containing the unknowns and R a constant
vector. It is interesting to note that there are more unknowns than equations
in 1. That means that there is an infinite set of wheel-torques guaranteeing the
static equilibrium. This characteristic is used to control the traction of each
wheel and select, among all the possibilities, the set of torques minimizing
slip. The optimal torques are selected by minimizing the function

f = max(
∑

i

Ti/Ni) i = 1..6 (2)

where Ti and Ni are the traction and the normal force applied to wheel i.

Rover motion

A static model balances the forces and moments on a system to remain at
rest or maintain a constant speed. Such a system is an ideal case and does not
include resistance to movement. Therefore, an additional torque compensating
the rolling resistance torque must be added on the wheels in order to complete
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the model and guarantee motion at constant speed. This results in a quasi-
static model. Unlike the other approaches, we don’t use complex wheel-soils
interaction models. Instead, we introduce a global speed control loop, in order
to estimate the rolling resistance as the robot moves. The final controller,
minimizing wheel slip and including rolling resistance, is depicted in Fig. 5.
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Mr rolling resistance torque s rover state
Mc correction torque Mw vector of wheel correction torques

Fig. 5: Rover motion control loop.

The kernel of the control loop is a PID controller. It allows to estimate
the additional torque to apply to each wheel in order to reach the desired
rover’s velocity Vd and thus, minimizes the error Vd − Vr. Mc is actually an
estimate of the global rolling resistance torque Mr, which is considered as
a perturbation by the PID controller. The rejection of the perturbation is
guaranteed by the integral term I of the PID. We assume that the rolling
resistance is proportional to the normal force, thus the individual corrections
for the wheels are calculated by

Mwi =
Ni

Nm
·Mc (3)

where Ni is the normal force on wheel i and Nm the average of all the
normal forces. The derivative term D of the PID allows to account for non
modeled dynamic effects and helps to stabilize the system. The parameters
estimation for the controller is not critical because we are more interested
in minimizing slip than in reaching the desired velocity very precisely. For
locomotion in rough terrain, a residual error on the velocity can be accepted
as long as slip is minimized.

Experimental results

A simulation phase using Open Dynamics Engine2 has been initiated in order
to test the approach and verify the theoretical concepts and assumptions. The
2 this library simulates rigid body dynamics in three dimensions, including ad-

vanced joint types and collision detection with friction.
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simulation parameters have been set as close as possible to the real operation
conditions. However, the intent is not to get exact outputs but to compare dif-
ferent control strategies and detect/solve potential implementation problems.
In the experiments, wheel slip has been taken as the main benchmark and the
performance of our controller (predictive) has been compared to the controller
presented in [6] (reactive). The reactive controller implements speed control
(spd) for the wheels whereas torque control (trq) is used in our approach.

Three dimensional surfaces are used for the experiments (see Fig. 6). Be-
cause the trajectory of the rover depends on the control strategy, we consider
an experiment to be valid if the distance between the final positions of both
paths is smaller than 0.1m (for a total distance of about 3.5m). This distance
is small enough to allow performance comparison. For all the valid experi-
ments, predictive control showed better performance than reactive control. In
some cases the rover was even unable to climb some obstacles and to reach
the final distance when driven using the reactive approach. It is interesting to
note that the slip signal is scaled down for each wheel when using predictive
control. Such behavior can be observed in Fig. 7: the peaks are generally at
the same places for both controllers but the amplitude is much smaller for the
reactive controller. Another interesting result is that the difference between
the two methods increases when the friction coefficient gets lower. In other
words, the advantage of using torque control becomes more and more inter-
esting as the soil gets more slippery. Such a controller improves the climbing

Fig. 6: Simulation environment
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Fig. 7: Wheel slip

capabilities of the rover and limits wheel-slip, which in turn improves the
accuracy of odometry. This way, it contributes to better position tracking
in rough terrain. Furthermore, our approach can be adapted to any kind of
wheeled rover and the needed processing power remains relatively low, which
makes online computation feasible. Finally, the simulations show promising
results and the system is mature enough to be implemented on SOLERO for
real experiments.
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5 Sensor fusion

In our approach an Extended Information Filter (EIF) is used to combine the
information acquired by the sensors. This formulation of the Kalman filter has
interesting features: its mathematical expression is well suited to implement a
distributed sensor fusion scheme and allows for easy extension of the system
in order to accommodate any number of sensors, of any kind. Fig. 8 depicts
the schematics of the sensor fusion process.

Himu Rimu RvmeHvme

Next step
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Fig. 8: Sensor fusion scheme

Sensor models: The position, velocity and attitude can be computed by inte-
grating the measurement acquired by the IMU. However, the accelerometers
and gyros are influenced by bias errors. In order to limit an unbounded growth
of the error of integrated measurements, we have introduced biases in the
model for the gyros (bωx, bωy, bωz) and the accelerometers (bax, bay, baz).
Unlike the roll and pitch angles, the rover’s heading is not periodically up-
dated by absolute data. Therefore, in order to limit the error growth, a special
provision is included in the z-gyro model: a more accurate modeling, incorpo-
rating the scaling error ∆ωz.

The robot used for this research is a partially skid-steered rover and the
natural and controlled motion is mainly in the forward direction. Thus, the
motion estimation errors due to wheel slip and wheel diameter variations have
much more effect in the x-z plane of the rover than along the transversal direc-
tion y. Therefore, scaling errors ∆ox and ∆oz, modeling wheel slip and wheel
diameter change, have been introduced only for the x and z-axes. The error
model for the odometry is tedious to develop because the robot is subject to
drive across various types of terrains. In order to avoid terrain classification
and complex wheel soil interaction modeling, we set the variance of the odom-
etry as being proportional to the acceleration undergone by the rover. Indeed,
slip mostly occurs in rough terrain, when negotiating an obstacle, while the
robot is subject to accelerations. Similarly, the variance for the yaw angle has
been set proportional to the angular rate. More details about the models of
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the IMU and 3D-Odometry can be found in [11] and reference [12] presents
the error model associated to the estimations of VME.

State prediction model: The angular rates, biases, scaling errors and accelera-
tions are random processes which are affected by the motion commands of the
rover, time and other unmodeled parameters. However, they cannot be con-
sidered as pure white noise because they are highly time correlated. Instead,
they are modelled as first order Gauss-Markov processes. Such modeling of
the state transition allows to both consider the time correlation and to filter
noise of the signals.

Experimental results

In order to better illustrate how each sensor contributes to the pose estimation
and in which situation, the experiments have been divided into two parts. The
first part describes the results of sensor fusion using inertial sensor and 3D-
Odometry only, whereas the second part involves all the three sensors i.e.
3D-Odometry, inertial sensor and VME.

Inertial and 3D-Odometry: The experimental results show that the inertial
navigation system helps to correct odometric errors and significantly improves
the pose estimate. The main contributions occur locally when the robot over-
comes sharp-shaped obstacles (Fig. 9) and during asymmetric wheel slip.
The improvement brought by the sensor fusion becomes more and more pro-
nounced as the total path length increases. More results are presented in [11].

d

c

True final height

Fig. 9: Sensor fusion with 3D-Odometry and inertial sensors. The ellipses emphasis
local corrections of the z coordinate.

Enhancement with VME: In the previous tests, only proprioceptive sensors
have been integrated to estimate the robots position. Even if the inertial sensor
helps to correct odometric error, there are situations where this combination of
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sensors does not provide enough information. For example, the situation where
all the wheels are slipping is not detected by the system. In this case, only
the odometric information is integrated, which produces erroneous position
estimates. Thus, in order to increase the robustness of the localization and to
limit the error growth, it is necessary to incorporate exteroceptive sensors. In
this application, we use visual motion estimation based on stereovision[12].
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Fig. 10: Sensor fusion using 3D-Odometry, IMU and VME

In general, VME produces better estimates than the other sensors (but
at a much slower rate). In particular, its estimates allow to correct the ac-
cumulated error due to wheel slip between two updates. However, in zone C
(Fig. 10), less than thirty features have been matched between three subse-
quent images. The difficulty to find matches between these images is due to
a high discrepancy between the views: when the rear wheel finally climbs the
obstacle, it causes the rover to tilt forward rapidly. As a consequence, VME
provided bad motion estimates with a high uncertainty. In this situation, less
weight is given to VME and the sensor fusion could perfectly filter this bad
information to produce a reasonably good estimate using 3D-Odometry and
IMU instead. Finally, the estimated final position is very close to the mea-
sured final position. A final error of four millimeters for a trajectory longer
than one meter (0.4%) is very satisfactory, given the difficulty of the terrain.

6 Conclusion

This paper showed how 3D position tracking in rough terrain can be im-
proved by considering the specificities of the vehicle used for locomotion.
3D-Odometry produces much better estimates than the standard approach
because it takes the kinematics of the rover into account. Similarly, by con-
sidering a physical model of the chassis it is possible to minimize wheel-slip,
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which in turn contributes towards better localization. In rough terrain, the
controller presented in Sect. 4 performs better than a controller based on a
reactive approach. Finally, experimental results of sensor fusion involving 3D-
Odometry, inertial sensors and visual motion estimation have been presented.
They prove that the use of complementary sensors improves the accuracy and
the robustness of the motion estimation. In particular, the system was able
to properly discard inaccurate visual motion information.
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