54 research outputs found

    Noise considerations in twin-core channel equalisers

    No full text
    Fibre optic channel equalisers are devices of prime importance in multi-channel telecommunication links and networks. They are used to compensate for the channel power imbalances accumulated along amplified long links and stabilise the channel optical powers. In multi-stage amplified optical links, channel power imbalances occur as a result two factors. Firstly, the emission and absorption cross-section variations across the erbium-doped fibre amplifier (EDFA) bandwidth result in channels experiencing different gains and acquiring unequal output power. Secondly, the output power imbalances are further deteriorated by the fact that the Er3+ transition is predominantly homogeneously broadened at room temperature. Therefore, the strongest signal (channel) saturates the gain medium and compresses the gain uniformly at the expense of the power of the weaker signals

    Optimization of linearly chirped grating dispersion compensated systems

    No full text
    The optimum design for a 10Gb/s NRZ chirped fibre grating dispersion compensated system operating at 1.55µm over standard fibre is investigated. The study considers self-phase modulation, dispersion, modulator chirp and amplifier noise. Transmission over 1700km of fibre may be achieved by incorporating gratings every 200km and optimising the modulator chirp

    Prospects for 1.3µm amplifiers

    No full text
    Current status and future prospects for a practical 1.3µm fibre amplifier are reviewed. Summary: The optical amplifier became a realistic prospect for telecommunications after the demonstration of the erbium doped fibre amplifier (EDFA), operating at 1.5µm. in 1987. Subsequent demonstrations of the diode-pumped device led to the first commercial products in 1990 and installation of optically amplified systems followed in 1993. However much of the installed base of fibre is designed for 1.3µm operation and thus the early success of the EDFA spurred the search for a 1.3µm fibre amplifier. First efforts focused on neodymium (Nd3+) and a diode pumped device exhibiting 10dB gain for 50mW of pump power was demonstrated in a ZBLAN fibre in 1991. However the performance of Nd3+ is limited in several respects, the most important of which, signal excited state absorption (ESA) limits the operating wavelength to more than 1.32µm. longer than ideal for zero dispersion in telecoms systems. Further the performance is fundamentally limited by the low branching ratio of the 1.3µm transition relative to competing transitions such as the 1.06µm emission. Techniques to completely suppress the build up of amplified spontaneous emission at 1.06µm have been proposed but, as yet, none has been demonstrated

    A frequency weighting for the evaluation of steering wheel rotational vibration

    Get PDF
    The human perception of rotational hand-arm vibration has been investigated by means of a test rig consisting of a rigid frame, an electrodynamic shaker unit, a rigid steering wheel, a shaft assembly, bearings and an automobile seat. Fifteen subjects were tested while seated in a driving posture. Four equal sensation tests and one annoyance threshold test were performed using sinusoidal excitation at 18 frequencies in the range from 3 to 315 Hz. In order to guarantee the generality of the equal sensation data the four tests were defined to permit checks of the possible influence of three factors: reference signal amplitude, psychophysical test procedure and temporary threshold shift (TTSv) caused by the test exposure. All equal sens ation tests used a reference sinusoid of 63 Hz at either 1.0 or 1.5 m/s2 r.m.s. in amplitude. The four equal sensation curves were similar in shape and suggested a decrease in human sensitivity to hand-arm rotational vibration with increasing frequency. The slopes of the equal sensation curves changed at transition points of approximately 6.3 and 63 Hz. A frequency weighting, called Ws, was developed for the purpose of evaluating steering wheel rotational vibration. The proposed Ws has a slope of 0 dB per octave over the frequency range from 3 to 6.3 Hz, a slope of -6 dB per octave from 6.3 to 50 Hz, a slope of 0 dB per octave from 50 to 160 Hz and a slope of -10 dB per octave from 160 to 315 Hz. Ws provides a possible alternative to the existing Wh frequency weighting defined in International Standards Organisation 5349-1 (2001) and British Standards Institution 6842 (1987)

    End of the Kiaman Superchron in the Permian of SW England: Magnetostratigraphy of the Aylesbeare Mudstone and Exeter groups

    Get PDF
    The chronology of Permian strata in SW England is fragmentary and largely based on radiometric dating of associated volcanic units. Magnetostratigraphy from the c. 2 km of sediments in the Exeter and Aylesbeare Mudstone groups was undertaken to define a detailed chronology, using the end of the Kiaman Superchron and the overlying reverse and normal polarity in the Middle and Upper Permian as age constraints. The palaeomagnetic directions are consistent with other European Permian palaeopoles, with data passing fold and reversal tests. The end of the Kiaman Superchron (in the Wordian) occurs in the uppermost part of the Exeter Group. The overlying Aylesbeare Mudstone Group is early Capitanian to latest Wuchiapingian in age. The Changhsingian and most of the Lower Triassic sequence is absent. Magnetostratigraphic comparison with the Southern Permian Basin shows that the Exeter and Aylesbeare Mudstone groups are closely comparable in age with the Havel and Elbe Subgroups of the Rotliegend II succession. The Altmark unconformities in these successions appear similar in age to the sequence boundaries in SW England, indicating that both may be climate controlled. Clasts in the Exeter Group, from unroofing of the Dartmoor Granite, first occurred at a minimum of c. 8 myr after formation of the granite

    HST-COS Observations of Hydrogen, Helium, Carbon and Nitrogen Emission from the SN 1987A Reverse Shock

    Get PDF
    We present the most sensitive ultraviolet observations of Supernova 1987A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (dv \sim 300 km/s) emission lines from the circumstellar ring, broad (dv \sim 10 -- 20 x 10^3 km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise (> 40 per resolution element) broad LyA emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at \lambda > 1350A can be explained by HI 2-photon emission from the same region. We confirm our earlier, tentative detection of NV \lambda 1240 emission from the reverse shock and we present the first detections of broad HeII \lambda1640, CIV \lambda1550, and NIV] \lambda1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 +/- 0.06. The NV/H-alpha line ratio requires partial ion-electron equilibration (T_{e}/T_{p} \approx 0.14 - 0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance ratio may have been stratified prior to the ring expulsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expulsion of the circumstellar ring.Comment: 12 pages, 8 figures. ApJ - accepte

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure

    Cinnamoyl-Oxaborole Amides: Synthesis and Their in Vitro Biological Activity.

    Get PDF
    Due to the increased interest in their application in the treatment of infectious diseases, boron-containing compounds have received a significant coverage in the literature. Herein, a small set of novel cinnamoly-oxaborole amides were synthesized and screened against nagana Trypanosoma brucei brucei for antitrypanosomal activity. Compound 5g emerged as a new hit with an in vitro IC50 value of 0.086 μM against T. b. brucei without obvious inhibitory activity against HeLa cell lines. The same series was also screened against other human pathogens, including Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), for which moderate to weak activity (10 to >125 μM) was observed. Similarly, these compounds exhibited moderate activity against the human protozoal pathogen Trichomonas vaginalis with no observed effect on common microbiome bacterial species. The cross-species inhibitory activity presents the possibility of these compounds serving as broad-spectrum antibiotics for these prevalent three human pathogens

    A JWST Survey of the Supernova Remnant Cassiopeia A

    Get PDF
    We present initial results from a James Webb Space Telescope (JWST) survey of the youngest Galactic core-collapse supernova remnant, Cassiopeia A (Cas A), made up of NIRCam and MIRI imaging mosaics that map emission from the main shell, interior, and surrounding circumstellar/interstellar material (CSM/ISM). We also present four exploratory positions of MIRI Medium Resolution Spectrograph integral field unit spectroscopy that sample ejecta, CSM, and associated dust from representative shocked and unshocked regions. Surprising discoveries include (1) a weblike network of unshocked ejecta filaments resolved to ∼0.01 pc scales exhibiting an overall morphology consistent with turbulent mixing of cool, low-entropy matter from the progenitor’s oxygen layer with hot, high-entropy matter heated by neutrino interactions and radioactivity; (2) a thick sheet of dust-dominated emission from shocked CSM seen in projection toward the remnant’s interior pockmarked with small (∼1″) round holes formed by ≲0.″1 knots of high-velocity ejecta that have pierced through the CSM and driven expanding tangential shocks; and (3) dozens of light echoes with angular sizes between ∼0.″1 and 1′ reflecting previously unseen fine-scale structure in the ISM. NIRCam observations place new upper limits on infrared emission (≲20 nJy at 3 μm) from the neutron star in Cas A’s center and tightly constrain scenarios involving a possible fallback disk. These JWST survey data and initial findings help address unresolved questions about massive star explosions that have broad implications for the formation and evolution of stellar populations, the metal and dust enrichment of galaxies, and the origin of compact remnant objects
    • …
    corecore