16 research outputs found

    Three principles for co-designing sustainability intervention strategies : Experiences from Southern Transylvania

    Get PDF
    Transformational research frameworks provide understanding and guidance for fostering change towards sustainability. They comprise stages of system understanding, visioning and co-designing intervention strategies to foster change. Guidance and empirical examples for how to facilitate the process of co-designing intervention strategies in real-world contexts remain scarce, especially with regard to integrating local initiatives. We suggest three principles to facilitate the process of co-designing intervention strategies that integrate local initiatives: (1) Explore existing and envisioned initiatives fostering change towards the desired future; (2) Frame the intervention strategy to bridge the gap between the present state and desired future state(s), building on, strengthening and complementing existing initiatives; (3) Identify drivers, barriers and potential leverage points for how to accelerate progress towards sustainability. We illustrate our approach via a case study on sustainable development in Southern Transylvania. We conclude that our principles were useful in the case study, especially with regards to integrating initiatives, and could also be applied in other real-world contexts.Peer reviewe

    Leverage points for sustainability transformation: a review on interventions in food and energy systems

    Get PDF
    © 2019 Elsevier B.V. There is increasing recognition that sustainability science should be solutions orientated and that such solutions will often require transformative change. However, the concrete sustainability interventions are often not clearly communicated, especially when it comes to the transformative change being created. Using food and energy systems as illustrative examples we performed a quantitative systematic review of empirical research addressing sustainability interventions. We use a modified version of Donella Meadows' notion of ‘leverage points’ – places in complex systems where relatively small changes can lead to potentially transformative systemic changes – to classify different interventions according to their potential for system wide change and sustainability transformation. Our results indicate that the type of interventions studied in the literature are partially driven by research methods and problem framings and that ‘deep leverage points’ related to changing the system's rules, values and paradigms are rarely addressed. We propose that for initiating system wide transformative change, deep leverage points – the goals of a system, its intent, and rules – need to be addressed more directly. This, in turn, requires an explicit consideration of how scientific approaches shape and constrain our understanding of where we can intervene in complex systems

    The programme on ecosystem change and society (PECS)–a decade of deepening social-ecological research through a place-based focus

    Get PDF
    The Programme on Ecosystem Change and Society (PECS) was established in 2011, and is now one of the major international social-ecological systems (SES) research networks. During this time, SES research has undergone a phase of rapid growth and has grown into an influential branch of sustainability science. In this Perspective, we argue that SES research has also deepened over the past decade, and helped to shed light on key dimensions of SES dynamics (e.g. system feedbacks, aspects of system design, goals and paradigms) that can lead to tangible action for solving the major sustainability challenges of our time. We suggest four ways in which the growth of place-based SES research, fostered by networks such as PECS, has contributed to these developments, namely by: 1) shedding light on transformational change, 2) revealing the social dynamics shaping SES, 3) bringing together diverse types of knowledge, and 4) encouraging reflexive researchers

    The eleventh and twelfth data releases of the Sloan Digital Sky Survey : final data from SDSS-III

    Get PDF
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new nearinfrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra

    The eleventh and twelfth data releases of the Sloan Digital Sky Survey : final data from SDSS-III

    No full text
    The third generation of the Sloan Digital Sky Survey (SDSS-III) took data from 2008 to 2014 using the original SDSS wide-field imager, the original and an upgraded multi-object fiber-fed optical spectrograph, a new nearinfrared high-resolution spectrograph, and a novel optical interferometer. All of the data from SDSS-III are now made public. In particular, this paper describes Data Release 11 (DR11) including all data acquired through 2013 July, and Data Release 12 (DR12) adding data acquired through 2014 July (including all data included in previous data releases), marking the end of SDSS-III observing. Relative to our previous public release (DR10), DR12 adds one million new spectra of galaxies and quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) over an additional 3000 deg2 of sky, more than triples the number of H-band spectra of stars as part of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE), and includes repeated accurate radial velocity measurements of 5500 stars from the Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS). The APOGEE outputs now include the measured abundances of 15 different elements for each star. In total, SDSS-III added 5200 deg2 of ugriz imaging; 155,520 spectra of 138,099 stars as part of the Sloan Exploration of Galactic Understanding and Evolution 2 (SEGUE-2) survey; 2,497,484 BOSS spectra of 1,372,737 galaxies, 294,512 quasars, and 247,216 stars over 9376 deg2; 618,080 APOGEE spectra of 156,593 stars; and 197,040 MARVELS spectra of 5513 stars. Since its first light in 1998, SDSS has imaged over 1/3 of the Celestial sphere in five bands and obtained over five million astronomical spectra

    Search for intermediate-mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo

    No full text
    International audienceIntermediate-mass black holes (IMBHs) span the approximate mass range 100−105 M⊙, between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∌150 M⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200 M⊙ and effective aligned spin 0.8 at 0.056 Gpc−3 yr−1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc−3 yr−1.Key words: gravitational waves / stars: black holes / black hole physicsCorresponding author: W. Del Pozzo, e-mail: [email protected]† Deceased, August 2020
    corecore