124 research outputs found

    The isotope composition of inorganic Germanium in seawater and deep sea sponges

    Get PDF
    Although dissolved concentrations of germanium (Ge) and silicon (Si) in modern seawater are tightly correlated, uncertainties still exist in the modern marine Ge cycle. Germanium stable isotope systematics in marine systems should provide additional constraints on marine Ge sources and sinks, however the low concentration of Ge in seawater presents an analytical challenge for isotopic measurement. Here, we present a new method of pre-concentration of inorganic Ge from seawater which was applied to measure three Ge isotope profiles in the Southern Ocean and deep seawater from the Atlantic and Pacific Oceans. Germanium isotopic measurements were performed on Ge amounts as low as 2.6 ng using a double-spike approach and a hydride generation system coupled to a MC-ICP-MS. Germanium was co-precipitated with iron hydroxide and then purified through anion-exchange chromatography. Results for the deep (i.e. > 1000 m depth) Pacific Ocean off Hawaii (nearby Loihi Seamount) and the deep Atlantic off Bermuda (BATS station) showed nearly identical δ74/70Ge values at 3.19 ± 0.31 ‰ (2SD, n = 9) and 2.93 ± 0.10 ‰ (2SD, n = 2), respectively. Vertical distributions of Ge concentration and isotope composition in the deep Southern Ocean for water depth > 1300 m yielded an average δ74/70Ge = 3.13 ± 0.25 ‰ (2SD, n = 14) and Ge/Si = 0.80 ± 0.09 μmol/mol (2SD, n = 12). Significant variations in δ74/70Ge, from 2.62 to 3.71 ‰, were measured in the first 1000 m in one station of the Southern Ocean near Sars Seamount in the Drake Passage, with the heaviest values measured in surface waters. Isotope fractionation by diatoms during opal biomineralization may explain the enrichment in heavy isotopes for both Ge and Si in surface seawater. However, examination of both oceanographic parameters and δ74/70Ge values suggest also that water mass mixing and potential contribution of shelf-derived Ge also could contribute to the variations. Combining these results with new Ge isotope data for deep-sea sponges sampled nearby allowed us to determine a Ge isotope fractionation factor of -0.87 ± 0.37 ‰ (2SD, n = 12) during Ge uptake by sponges. Although Ge has long been considered as a geochemical twin of Si, this work underpins fundamental differences in their isotopic behaviors both during biomineralization processes and in their oceanic distributions. This suggests that combined with Si isotopes, Ge isotopes hold significant promise as a complementary proxy for delineating biological versus source effects in the evolution of the marine silicon cycle through time

    Biological Soil Crusts as Modern Analogues for the Archean Continental Biosphere: Insights from Carbon and Nitrogen Isotopes

    Get PDF
    5 pagesInternational audienceStable isotope signatures of elements related to life such as carbon and nitrogen can be powerful biomarkers that provide key information on the biological origin of organic remains and their paleoenvironments. Marked advances have been achieved in the last decade in our understanding of the coupled evolution of biological carbon and nitrogen cycling and the chemical evolution of the early Earth thanks, in part, to isotopic signatures preserved in fossilized microbial mats and organic matter of marine origin. However, the geologic record of the early continental biosphere, as well as its evolution and biosignatures, is still poorly constrained. Following a recent report of direct fossil evidence of life on land at 3.22 Ga, we compare here the carbon and nitrogen isotopic signals of this continental Archean biosphere with biosignatures of cyanobacteria biological soil crusts (cyanoBSCs) colonizing modern arid environments. We report the first extended δ13C and δ15N data set from modern cyanoBSCs and show that these modern communities harbor specific isotopic biosignatures that compare well with continental Archean organic remains. We therefore suggest that cyanoBSCs are likely relevant analogs for the earliest continental ecosystems. As such, they can provide key information on the timing, extent, and possibly mechanism of colonization of the early Earth's emergent landmasses

    Proterozoic ocean redox and biogeochemical stasis

    Get PDF
    The partial pressure of oxygen in Earth’s atmosphere has increased dramatically through time, and this increase is thought to have occurred in two rapid steps at both ends of the Proterozoic Eon (∼2.5–0.543 Ga). However, the trajectory and mechanisms of Earth’s oxygenation are still poorly constrained, and little is known regarding attendant changes in ocean ventilation and seafloor redox. We have a particularly poor understanding of ocean chemistry during the mid-Proterozoic (∼1.8–0.8 Ga). Given the coupling between redox-sensitive trace element cycles and planktonic productivity, various models for mid-Proterozoic ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients, with potential ecological constraints on emerging eukaryotic life. Here, we exploit the differing redox behavior of molybdenum and chromium to provide constraints on seafloor redox evolution by coupling a large database of sedimentary metal enrichments to a mass balance model that includes spatially variant metal burial rates. We find that the metal enrichment record implies a Proterozoic deep ocean characterized by pervasive anoxia relative to the Phanerozoic (at least ∼30–40% of modern seafloor area) but a relatively small extent of euxinic (anoxic and sulfidic) seafloor (less than ∼1–10% of modern seafloor area). Our model suggests that the oceanic Mo reservoir is extremely sensitive to perturbations in the extent of sulfidic seafloor and that the record of Mo and chromium enrichments through time is consistent with the possibility of a Mo–N colimited marine biosphere during many periods of Earth’s history

    Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution

    Get PDF
    Author Posting. © The Author(s), 2012. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geobiology 11 (2013): 295-306, doi:10.1111/gbi.12036.Here we explore enrichments in paleomarine Zn as recorded by authigenic iron oxides including Precambrian iron formations, ironstones and Phanerozoic hydrothermal exhalites. This compilation of new and literature-based iron formation analyses track dissolved Zn abundances and constrain the magnitude of the marine reservoir over geological time. Overall, the iron formation record is characterized by a fairly static range in Zn/Fe ratios throughout the Precambrian, consistent with the shale record (Scott et al., 2013, Nature Geoscience, 6, 125-128). When hypothetical partitioning scenarios are applied to this record, paleomarine Zn concentrations within about an order of magnitude of modern are indicated. We couple this examination with new chemical speciation models used to interpret the iron formation record. We present two scenarios: first, under all but the most sulfidic conditions and with Zn binding organic ligand concentrations similar to modern oceans, the amount of bioavailable Zn remained relatively unchanged through time. Late proliferation of Zn in eukaryotic metallomes has previously been linked to marine Zn biolimitation, but under this scenario, the expansion in eukaryotic Zn metallomes may be better linked to biologically intrinsic evolutionary factors. In this case zinc’s geochemical and biological evolution may be decoupled, and viewed as a function of increasing need for genome regulation and diversification of Zn-binding transcription factors. In the second scenario, we consider Archean organic ligand complexation in such excess that it may render Zn bioavailability low. However, this is dependent on Zn organic ligand complexes not being bioavailable, which remains unclear. In this case, although bioavailability may be low, sphalerite precipitation is prevented, thereby maintaining a constant Zn inventory throughout both ferruginous and euxinic conditions. These results provide new perspectives and constraints 50 on potential couplings between the trajectory of biological and marine geochemical coevolution.This work was supported by a NSERC Discovery Grant to KOK, a NSERC PDF to SVL, a NSERC CGSM to LJR, and an NSF-EAR-PDF to NJP. MAS acknowledges support from the Gordon and Betty Moore Foundation Grant #2724. This work was also supported by grants from the Deutsche Forschungsgemeinschaft (DFG) to A.K. (KA 1736/4-1 and 12-1)

    Lagrangian Klein bottles in R^{2n}

    Full text link
    It is shown that the n-dimensional Klein bottle admits a Lagrangian embedding into R^{2n} if and only if n is odd.Comment: V.2 - explicit formula for the Luttinger-type surgery; V.3 - section 3 corrected, section 6 expanded; 6 page

    The HAND-Q : Psychometrics of a New Patient-reported Outcome Measure for Clinical and Research Applications

    Get PDF
    Background: The perspective of the patient in measuring the outcome of their hand treatment is of key importance. We developed a hand-specific patient-reported outcome measure to provide a means to measure outcomes and experiences of care from the patient perspective, that is, HAND-Q. Methods: Data were collected from people with a broad range of hand conditions in hand clinics in six countries between April 2018 and January 2021. Rasch measurement theory analysis was used to perform item reduction and to examine reliability and validity of each HAND-Q scale. Results: A sample of 1277 patients was recruited. Participants ranged in age from 16 to 89 years, 54% were women, and a broad range of congenital and acquired hand conditions were represented. Rasch measurement theory analysis led to the refinement of 14 independently functioning scales that measure hand appearance, health-related quality of life, experience of care, and treatment outcome. Each scale evidenced reliability and validity. Examination of differential item functioning by age, gender, language, and type of hand condition (ie, nontraumatic versus traumatic) confirmed that a common scoring algorithm for each scale could be implemented. Conclusions: The HAND-Q was developed following robust psychometric methods to provide a comprehensive modular independently functioning set of scales. HAND-Q scales can be used to assess and compare evidence-based outcomes in patients with any type of hand condition.Peer reviewe

    Brainstem Respiratory Oscillators Develop Independently of Neuronal Migration Defects in the Wnt/PCP Mouse Mutant looptail

    Get PDF
    The proper development and maturation of neuronal circuits require precise migration of component neurons from their birthplace (germinal zone) to their final positions. Little is known about the effects of aberrant neuronal position on the functioning of organized neuronal groups, especially in mammals. Here, we investigated the formation and properties of brainstem respiratory neurons in looptail (Lp) mutant mice in which facial motor neurons closely apposed to some respiratory neurons fail to migrate due to loss of function of the Wnt/Planar Cell Polarity (PCP) protein Vangl2. Using calcium imaging and immunostaining on embryonic hindbrain preparations, we found that respiratory neurons constituting the embryonic parafacial oscillator (e-pF) settled at the ventral surface of the medulla in Vangl2Lp/+ and Vangl2Lp/Lp embryos despite the failure of tangential migration of its normally adjacent facial motor nucleus. Anatomically, the e-pF neurons were displaced medially in Lp/+ embryos and rostro-medially Lp/Lp embryos. Pharmacological treatments showed that the e-pF oscillator exhibited characteristic network properties in both Lp/+ and Lp/Lp embryos. Furthermore, using hindbrain slices, we found that the other respiratory oscillator, the preBötzinger complex, was also anatomically and functionally established in Lp mutants. Importantly, the displaced e-pF oscillator established functional connections with the preBötC oscillator in Lp/+ mutants. Our data highlight the robustness of the developmental processes that assemble the neuronal networks mediating an essential physiological function

    Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    Get PDF
    The early Earth was characterized by the absence of oxygen in the ocean–atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5–2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen

    Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds

    Get PDF
    Many plants respond to herbivory with an increased production of extrafloral nectar (EFN) and/or volatile organic compounds (VOCs) to attract predatory arthropods as an indirect defensive strategy. In this study, we tested whether these two indirect defences fit the optimal defence hypothesis (ODH), which predicts the within-plant allocation of anti-herbivore defences according to trade-offs between growth and defence. Using jasmonic acid-induced plants of Phaseolus lunatus and Ricinus communis, we tested whether the within-plant distribution pattern of these two indirect defences reflects the fitness value of the respective plant parts. Furthermore, we quantified photosynthetic rates and followed the within-plant transport of assimilates with 13C labelling experiments. EFN secretion and VOC emission were highest in younger leaves. Moreover, the photosynthetic rate increased with leaf age, and pulse-labelling experiments suggested transport of carbon to younger leaves. Our results demonstrate that the ODH can explain the within-plant allocation pattern of both indirect defences studied
    corecore