61 research outputs found

    Alien Registration- Lajoie, Paul J. (Berwick, York County)

    Get PDF
    https://digitalmaine.com/alien_docs/1001/thumbnail.jp

    Beam-energy and centrality dependence of direct-photon emission from ultra-relativistic heavy-ion collisions

    Get PDF
    The PHENIX collaboration presents first measurements of low-momentum (0.41\,GeV/c) direct-photon yield dNdirγ/dη is a smooth function of dNch/dη and can be well described as proportional to (dNch/dη)α with α≈1.25. This scaling behavior holds for a wide range of beam energies at the Relativistic Heavy Ion Collider and the Large Hadron Collider, for centrality selected samples, as well as for different, A+A collision systems. At a given beam energy the scaling also holds for high pT (\u3e5\,GeV/c) but when results from different collision energies are compared, an additional sNN−−−√-dependent multiplicative factor is needed to describe the integrated-direct-photon yield

    Transverse energy production and charged-particle multiplicity at midrapidity in various systems from root s(NN)=7.7 to 200 GeV

    Get PDF
    Measurements of midrapidity charged-particle multiplicity distributions, dN(ch)/d eta, and midrapidity transverse-energy distributions, dE(T)/d eta, are presented for a variety of collision systems and energies. Included are distributions for Au + Au collisions at root s(NN) = 200, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV, Cu + Au collisions at root s(NN) = 200 GeV, U + U collisions at root s(NN) = 193 GeV, d + Au collisions at root s(NN) = 200 GeV, He-3 + Au collisions at root s(NN) = 200 GeV, and p + p collisions at root s(NN) = 200 GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, N-part, and the number of constituent quark participants, N-qp. For all A + A collisions down to root s(NN) = 7.7 GeV, it is observed that the midrapidity data are better described by scaling with N-qp than scaling with N-part. Also presented are estimates of the Bjorken energy density, epsilon(BJ), and the ratio of dE(T)/d eta to dN(ch)/d eta, the latter of which is seen to be constant as a function of centrality for all systems

    The PHENIX Experiment at RHIC

    Full text link
    The physics emphases of the PHENIX collaboration and the design and current status of the PHENIX detector are discussed. The plan of the collaboration for making the most effective use of the available luminosity in the first years of RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program available at http://www.rhic.bnl.gov/phenix

    Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association

    Get PDF
    The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes

    Redox-Induced Src Kinase and Caveolin-1 Signaling in TGF-β1-Initiated SMAD2/3 Activation and PAI-1 Expression

    Get PDF
    Plasminogen activator inhibitor-1 (PAI-1), a major regulator of the plasmin-based pericellular proteolytic cascade, is significantly increased in human arterial plaques contributing to vessel fibrosis, arteriosclerosis and thrombosis, particularly in the context of elevated tissue TGF-β1. Identification of molecular events underlying to PAI-1 induction in response to TGF-β1 may yield novel targets for the therapy of cardiovascular disease.Reactive oxygen species are generated within 5 minutes after addition of TGF-β1 to quiescent vascular smooth muscle cells (VSMCs) resulting in pp60(c-src) activation and PAI-1 expression. TGF-β1-stimulated Src kinase signaling sustained the duration (but not the initiation) of SMAD3 phosphorylation in VSMC by reducing the levels of PPM1A, a recently identified C-terminal SMAD2/3 phosphatase, thereby maintaining SMAD2/3 in an active state with retention of PAI-1 transcription. The markedly increased PPM1A levels in triple Src kinase (c-Src, Yes, Fyn)-null fibroblasts are consistent with reductions in both SMAD3 phosphorylation and PAI-1 expression in response to TGF-β1 compared to wild-type cells. Activation of the Rho-ROCK pathway was mediated by Src kinases and required for PAI-1 induction in TGF-β1-stimulated VSMCs. Inhibition of Rho-ROCK signaling blocked the TGF-β1-mediated decrease in nuclear PPM1A content and effectively attenuated PAI-1 expression. TGF-β1-induced PAI-1 expression was undetectable in caveolin-1-null cells, correlating with the reduced Rho-GTP loading and SMAD2/3 phosphorylation evident in TGF-β1-treated caveolin-1-deficient cells relative to their wild-type counterparts. Src kinases, moreover, were critical upstream effectors of caveolin-1(Y14) phosphoryation and initiation of downstream signaling.TGF-β1-initiated Src-dependent caveolin-1(Y14) phosphorylation is a critical event in Rho-ROCK-mediated suppression of nuclear PPM1A levels maintaining, thereby, SMAD2/3-dependent transcription of the PAI-1 gene

    Abeta42-Induced Neurodegeneration via an Age-Dependent Autophagic-Lysosomal Injury in Drosophila

    Get PDF
    The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Aβ1–42) is believed to play a causative role in the development of AD. Here we expressed human Aβ1–42 and amyloid beta 40 (Aβ1–40) in Drosophila neurons. Aβ1–42 but not Aβ1–40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Aβ1–42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Aβ1–42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Aβ1–42 and Aβ1–40, and reveal an Aβ1–42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury

    Improved reference genome uncovers novel sex-linked regions in the Guppy (Poecilia reticulata)

    Get PDF
    This is the author accepted manuscript. The final version is available on open access from Oxford University Press via the DOI in this recordData availability: Population genomics data are available on ENA: Study: PRJEB10680 PCR-free data are available on ENA: Study PRJEB36450 Genome assembly is available on ENA ID: PRJEB36704; ERP119926 All scripts and pipelines are available on github: https://github.com/bfrasercommits/guppy_genomeTheory predicts that the sexes can achieve greater fitness if loci with sexually antagonistic polymorphisms become linked to the sex determining loci, and this can favour the spread of reduced recombination around sex determining regions. Given that sex-linked regions are frequently repetitive and highly heterozygous, few complete Y chromosome assemblies are available to test these ideas. The guppy system (Poecilia reticulata) has long been invoked as an example of sex chromosome formation resulting from sexual conflict. Early genetics studies revealed that male colour patterning genes are mostly but not entirely Y-linked, and that X-linkage may be most common in low predation populations. More recent population genomic studies of guppies have reached varying conclusions about the size and placement of the Y-linked region. However, this previous work used a reference genome assembled from short-read sequences from a female guppy. Here, we present a new guppy reference genome assembly from a male, using long-read PacBio single-molecule real-time sequencing (SMRT) and chromosome contact information. Our new assembly sequences across repeat- and GC-rich regions and thus closes gaps and corrects mis-assemblies found in the short-read female-derived guppy genome. Using this improved reference genome, we then employed broad population sampling to detect sex differences across the genome. We identified two small regions that showed consistent male-specific signals. Moreover, our results help reconcile the contradictory conclusions put forth by past population genomic studies of the guppy sex chromosome. Our results are consistent with a small Y-specific region and rare recombination in male guppies.Max Planck SocietyEuropean Research Council (ERC)Natural Environment Research Council (NERC

    Roles of Electrostatics and Conformation in Protein-Crystal Interactions

    Get PDF
    In vitro studies have shown that the phosphoprotein osteopontin (OPN) inhibits the nucleation and growth of hydroxyapatite (HA) and other biominerals. In vivo, OPN is believed to prevent the calcification of soft tissues. However, the nature of the interaction between OPN and HA is not understood. In the computational part of the present study, we used molecular dynamics simulations to predict the adsorption of 19 peptides, each 16 amino acids long and collectively covering the entire sequence of OPN, to the {100} face of HA. This analysis showed that there is an inverse relationship between predicted strength of adsorption and peptide isoelectric point (P<0.0001). Analysis of the OPN sequence by PONDR (Predictor of Naturally Disordered Regions) indicated that OPN sequences predicted to adsorb well to HA are highly disordered. In the experimental part of the study, we synthesized phosphorylated and non-phosphorylated peptides corresponding to OPN sequences 65–80 (pSHDHMDDDDDDDDDGD) and 220–235 (pSHEpSTEQSDAIDpSAEK). In agreement with the PONDR analysis, these were shown by circular dichroism spectroscopy to be largely disordered. A constant-composition/seeded growth assay was used to assess the HA-inhibiting potencies of the synthetic peptides. The phosphorylated versions of OPN65-80 (IC50 = 1.93 µg/ml) and OPN220-235 (IC50 = 1.48 µg/ml) are potent inhibitors of HA growth, as is the nonphosphorylated version of OPN65-80 (IC50 = 2.97 µg/ml); the nonphosphorylated version of OPN220-235 has no measurable inhibitory activity. These findings suggest that the adsorption of acidic proteins to Ca2+-rich crystal faces of biominerals is governed by electrostatics and is facilitated by conformational flexibility of the polypeptide chain
    corecore