105 research outputs found

    Activation of Peroxisome Proliferator–Activated Receptor β/δ Inhibits Lipopolysaccharide-Induced Cytokine Production in Adipocytes by Lowering Nuclear Factor-κB Activity via Extracellular Signal–Related Kinase 1/2

    Get PDF
    OBJECTIVE—Chronic activation of the nuclear factor-κB (NF-κB) in white adipose tissue leads to increased production of pro-inflammatory cytokines, which are involved in the development of insulin resistance. It is presently unknown whether peroxisome proliferator–activated receptor (PPAR) β/δ activation prevents inflammation in adipocytes

    NS3 protease polymorphism and natural resistance to protease inhibitors in French patients infected with HCV genotypes 1–5

    Get PDF
    Background: Resistant HCV populations may pre-exist in patients before NS3 protease inhibitor therapy and would likely be selected under specific antiviral pressure. The higher prevalence and lower rate of response to treatment associated with HCV genotype 1 infections has led to drug discovery efforts being focused primarily on enzymes produced by this genotype. Protease inhibitors may also be useful for non-genotype-1-infected patients, notably for non-responders.Methods: We investigated the prevalence of dominant resistance mutations and polymorphism in 298 HCV protease-inhibitor-naive patients infected with HCV genotypes 1, 2, 3, 4 or 5. Genotype-specific NS3 primers were designed to amplify and sequence the NS3 protease gene. Results: None of the 233 analysed sequences contained major telaprevir (TVR) or boceprevir (BOC) resistance mutations (R155K/T/M, A156S/V/T and V170A). Some substitutions (V36L, T54S, Q80K/R, D168Q and V170T) linked to low or moderate decreases in HCV sensitivity to protease inhibitors were prevalent according to genotype (between 2% and 100%). Other than genotype signature mutations at positions 36, 80 and 168, the most frequent substitution was T54S (4 genotype 1 and 2 genotype 4 sequences). All genotype 2–5 sequences had the non-genotype-1 signature V36L mutation known to confer low-level resistance to both TVR and BOC. Conclusions: We have developed an HCV protease NS3 inhibitor resistance genotyping tool suitable for use with HCV genotypes 1–5. Polymorphism data is valuable for interpreting genotypic resistance profiles in cases of failure of anti-HCV NS3 protease treatment

    Identification of Pharmacological Modulators of HMGB1-Induced Inflammatory Response by Cell-Based Screening

    Get PDF
    High mobility group box 1 (HMGB1), a highly conserved, ubiquitous protein, is released into the circulation during sterile inflammation (e.g. arthritis, trauma) and circulatory shock. It participates in the pathogenesis of delayed inflammatory responses and organ dysfunction. While several molecules have been identified that modulate the release of HMGB1, less attention has been paid to identify pharmacological inhibitors of the downstream inflammatory processes elicited by HMGB1 (C23-C45 disulfide C106 thiol form). In the current study, a cell-based medium-throughput screening of a 5000+ compound focused library of clinical drugs and drug-like compounds was performed in murine RAW264.7 macrophages, in order to identify modulators of HMGB1-induced tumor-necrosis factor alpha (TNFα) production. Clinically used drugs that suppressed HMGB1-induced TNFα production included glucocorticoids, beta agonists, and the anti-HIV compound indinavir. A re-screen of the NIH clinical compound library identified beta-agonists and various intracellular cAMP enhancers as compounds that potentiate the inhibitory effect of glucocorticoids on HMGB1-induced TNFα production. The molecular pathways involved in this synergistic anti-inflammatory effect are related, at least in part, to inhibition of TNFα mRNA synthesis via a synergistic suppression of ERK/IκB activation. Inhibition of TNFα production by prednisolone+salbutamol pretreatment was also confirmed in vivo in mice subjected to HMGB1 injection; this effect was more pronounced than the effect of either of the agents administered separately. The current study unveils several drug-like modulators of HMGB1-mediated inflammatory responses and offers pharmacological directions for the therapeutic suppression of inflammatory responses in HMGB1-dependent diseases. © 2013 Gerö et al

    Dendritic Cells/Natural Killer Cross-Talk: A Novel Target for Human Immunodeficiency Virus Type-1 Protease Inhibitors

    Get PDF
    BACKGROUND: HIV-1 Protease Inhibitors, namely PIs, originally designed to inhibit HIV-1 aspartic protease, can modulate the immune response by mechanisms largely unknown, and independent from their activity on viral replication. Here, we analyzed the ability of PIs to interfere with differentiation program of monocytes toward dendritic cell (DCs) lineage, a key process in the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: Monocytes from healthy donors were isolated and induced to differentiate in vitro in the presence or absence of saquinavir, ritonavir, nelfinavir, indinavir or amprenavir (sqv, rtv, nlfv, idv, apv, respectively). These drugs demonstrated a differential ability to sustain the generation of immature DCs (iDCs) with an altered phenotype, including low levels of CD1a, CD86, CD36 and CD209. DCs generated in the presence of rtv also failed to acquire the typical phenotype of mature DCs (mDCs), and secreted lower amounts of IL-12 and IL-15. Accordingly, these aberrant mDCs failed to support activation of autologous Natural Killer (NK) cells, and resulted highly susceptible to NK cell-mediated cytotoxicity. CONCLUSIONS/SIGNIFICANCE: Our findings uncover novel functional properties of PIs within the DC-NK cell cross-talk, unveiling the heterogeneous ability of members of this class drugs to drive the generation of atypical monocyte-derived DCs (MDDCs) showing an aberrant phenotype, a failure to respond appropriately to bacterial endotoxin, a weak ability to prime autologous NK cells, and a high susceptibility to NK cell killing. These unexpected properties might contribute to limit inflammation and viral spreading in HIV-1 infected patients under PIs treatment, and open novel therapeutical perspectives for this class drugs as immunomodulators in autoimmunity and cancer

    Functional Polymorphism of IL-1 Alpha and Its Potential Role in Obesity in Humans and Mice

    Get PDF
    Proinflammatory cytokines secreted from adipose tissue contribute to the morbidity associated with obesity. IL-1α is one of the proinflammatory cytokines; however, it has not been clarified whether IL-1α may also cause obesity. In this study, we investigated whether polymorphisms in IL-1α contribute to human obesity. A total of 260 obese subjects were genotyped for IL-1α C-889T (rs1800587) and IL-1α G+4845T (rs17561). Analyses of genotype distributions revealed that both IL-1α polymorphisms C-889T (rs1800587) and G+4845T (rs17561) were associated with an increase in body mass index in obese healthy women. In addition, the effect of rs1800587 on the transcriptional activity of IL-1α was explored in pre-adipocyte 3T3-L1 cells. Significant difference was found between the rs1800587 polymorphism in the regulatory region of the IL-1α gene and transcriptional activity. We extended these observations in vivo to a high-fat diet-induced obese mouse model and in vitro to pre-adipocyte 3T3-L1 cells. IL-1α levels were dramatically augmented in obese mice, and triglyceride was increased 12 hours after IL-1α injection. Taken together, IL-1α treatment regulated the differentiation of preadipocytes. IL-1α C-889T (rs1800587) is a functional polymorphism of IL-1α associated with obesity. IL-1α may have a critical function in the development of obesity

    Different Molecular Signatures in Magnetic Resonance Imaging-Staged Facioscapulohumeral Muscular Dystrophy Muscles

    Get PDF
    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common muscular dystrophies and is characterized by a non-conventional genetic mechanism activated by pathogenic D4Z4 repeat contractions. By muscle Magnetic Resonance Imaging (MRI) we observed that T2-short tau inversion recovery (T2-STIR) sequences identify two different conditions in which each muscle can be found before the irreversible dystrophic alteration, marked as T1-weighted sequence hyperintensity, takes place. We studied these conditions in order to obtain further information on the molecular mechanisms involved in the selective wasting of single muscles or muscle groups in this disease

    The Role of T cell PPAR γ in mice with experimental inflammatory bowel disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peroxisome proliferator-activated receptor γ (PPAR γ) is a nuclear receptor whose activation has been shown to modulate macrophage and T cell-mediated inflammation. The objective of this study was to investigate the mechanisms by which the deletion of PPAR γ in T cells modulates immune cell distribution and colonic gene expression and the severity of experimental IBD.</p> <p>Methods</p> <p>PPAR γ flfl; CD4 Cre<sup>+ </sup>(CD4cre) or Cre- (WT) mice were challenged with 2.5% dextran sodium sulfate in their drinking water for 0, 2, or 7 days. Mice were scored on disease severity both clinically and histopathologically. Flow cytometry was used to assess lymphocyte and macrophage populations in the blood, spleen, and mesenteric lymph nodes (MLN). Global gene expression in colonic mucosa was profiled using Affymetrix microarrays.</p> <p>Results</p> <p>The deficiency of PPAR γ in T cells accelerated the onset of disease and body weight loss. Examination of colon histopathology revealed significantly greater epithelial erosion, leukocyte infiltration, and mucosal thickening in the CD4cre mice on day 7. CD4cre mice had more CD8<sup>+ </sup>T cells than WT mice and fewer CD4<sup>+</sup>FoxP3<sup>+ </sup>regulatory T cells (Treg) and IL10<sup>+</sup>CD4<sup>+ </sup>T cells in blood and MLN, respectively. Transcriptomic profiling revealed around 3000 genes being transcriptionally altered as a result of DSS challenge in CD4cre mice. These included up-regulated mRNA expression of adhesion molecules, proinflammatory cytokines interleukin-6 (IL-6) and IL-1β, and suppressor of cytokine signaling 3 (SOCS-3) on day 7. Gene set enrichment analysis (GSEA) showed that the ribosome and Krebs cycle pathways were downregulated while the apoptosis pathway was upregulated in colons of mice lacking PPAR γ in T cells.</p> <p>Conclusions</p> <p>The expression of PPAR γ in T cells is involved in preventing gut inflammation by regulating colonic expression of adhesion molecules and inflammatory mediators at later stages of disease while favoring the recruitment of Treg to the mucosal inductive sites.</p

    Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adipocytes express inflammatory mediators that contribute to the low-level, chronic inflammation found in obese subjects and have been linked to the onset of cardiovascular disorders and insulin resistance associated with type 2 diabetes mellitus. A reduction in inflammatory gene expression in adipocytes would be expected to reverse this low-level, inflammatory state and improve cardiovascular function and insulin sensitivity. The natural products, curcumin and resveratrol, are established anti-inflammatory compounds that mediate their effects by inhibiting activation of NF-κB signaling. In the present study, we examined if these natural products can inhibit NF-κB activation in adipocytes and in doing so reduce cytokine expression.</p> <p>Methods</p> <p>Cytokine (TNF-α, IL-1β, IL-6) and COX-2 gene expression in 3T3-L1-derived adipocytes was measured by quantitative real-time PCR (qRT-PCR) with or without TNFα-stimulation. Cytokine protein and prostaglandin E<sub>2 </sub>(PGE<sub>2</sub>) expression were measured by ELISA. Effects of curcumin and resveratrol were evaluated by treating TNFα-stimulated adipocytes with each compound and 1) assessing the activation state of the NF-κB signaling pathway and 2) measuring inflammatory gene expression by qRT-PCR and ELISA.</p> <p>Results</p> <p>Both preadipocytes and differentiated adipocytes express the genes for TNF-α, IL-6, and COX-2, key mediators of the inflammatory response. Preadipocytes were also found to express IL-1β; however, IL-1β expression was absent in differentiated adipocytes. TNF-α treatment activated NF-κB signaling in differentiated adipocytes by inducing IκB degradation and NF-κB translocation to the nucleus, and as a result increased IL-6 (6-fold) and COX-2 (2.5-fold) mRNA levels. TNF-α also activated IL-1β gene expression in differentiated adipocytes, but had no effect on endogenous TNF-α mRNA levels. No detectable TNFα or IL-1β was secreted by adipocytes. Curcumin and resveratrol treatment inhibited NF-κB activation and resulted in a reduction of TNF-α, IL-1β, IL-6, and COX-2 gene expression (IC<sub>50 </sub>= 2 μM) and a reduction of secreted IL-6 and PGE<sub>2 </sub>(IC<sub>50 </sub>~ 20 μM).</p> <p>Conclusion</p> <p>Curcumin and resveratrol are able to inhibit TNFα-activated NF-κB signaling in adipocytes and as a result significantly reduce cytokine expression. These data suggest that curcumin and resveratrol may provide a novel and safe approach to reduce or inhibit the chronic inflammatory properties of adipose tissue.</p

    Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney—potential mechanism of lifespan extension

    Get PDF
    Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute to the regulation of longevity in GHRKO mice. Alterations in apoptosis-related genes expression in the kidneys also may potentially lead to lifespan extension. In this context, we decided to examine the renal expression of the following genes: caspase-3, caspase-9, caspase-8, bax, bad, bcl-2, Smac/DIABLO, Apaf-1, p53, and cytochrome c1 (cyc1) in male GHRKO and N mice subjected to VFR or sham surgery, at approximately 6 months of age. The kidneys were collected 2 months after VFR. As a result, caspase-3, caspase-9, and bax expressions were decreased in KO mice as compared to N animals. Expressions of Smac/DIABLO, caspase-8, bcl-2, bad, and p53 did not differ between KOs and N mice. VFR did not change the expression of the examined genes in KO or N mice. In conclusion, endocrine abnormalities in GHRKO mice result in decreased expression of pro-apoptotic genes and VFR did not alter the examined genes expression in N and KO mice. These data are consistent with a model in which alterations of GH signaling and/or insulin sensitivity lead to increased lifespan mediated by decreased renal expression of pro-apoptotic genes
    corecore