465 research outputs found
PAH Formation in O-rich Planetary Nebulae
Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich
planetary nebulae towards the Galactic Bulge. This combination of oxygen-rich
and carbon-rich material, known as dual-dust or mixed chemistry, is not
expected to be seen around such objects. We recently proposed that PAHs could
be formed from the photodissociation of CO in dense tori. In this work, using
VISIR/VLT, we spatially resolved the emission of the PAH bands and ionised
emission from the [SIV] line, confirming the presence of dense central tori in
all the observed O-rich objects. Furthermore, we show that for most of the
objects, PAHs are located at the outer edge of these dense/compact tori, while
the ionised material is mostly present in the inner parts of these tori,
consistent with our hypothesis for the formation of PAHs in these systems. The
presence of a dense torus has been strongly associated with the action of a
central binary star and, as such, the rich chemistry seen in these regions may
also be related to the formation of exoplanets in post-common-envelope binary
systems.Comment: 14, accepted for publication in the MNRAS Journa
Disk evaporation in a planetary nebula
We study the Galactic bulge planetary nebula M 2-29 (for which a 3-year
eclipse event of the central star has been attributed to a dust disk) using HST
imaging and VLT spectroscopy, both long-slit and integral field. The central
cavity of M 2-29 is filled with a decreasing, slow wind. An inner high density
core is detected, with radius less than 250 AU, interpreted as a rotating
gas/dust disk with a bipolar disk wind. The evaporating disk is argued to be
the source of the slow wind. The central star is a source of a very fast wind
(1000 km/s). An outer, partial ring is seen in the equatorial plane, expanding
at 12 km/s. The azimuthal asymmetry is attributed to mass-loss modulation by an
eccentric binary. M 2-29 presents a crucial point in disk evolution, where
ionization causes the gas to be lost, leaving a low-mass dust disk behind.Comment: 11 pages, accepted for publication in "Astronomy and Astrophysics
VISIR-VLT high resolution study of the extended emission of four obscured post-AGB candidates
The onset of the asymmetry of planetary nebulae (PNe) is expected to occur
during the late Asymptotic Giant Branch (AGB) and early post-AGB phases of low-
and intermediate-mass stars. Among all post-AGB objects, the most heavily
obscured ones might have escaped the selection criteria of previous studies
detecting extreme axysimmetric structures in young PNe. Since the most heavily
obscured post-AGB sources can be expected to descend from the most massive PN
progenitors, these should exhibit clear asymmetric morphologies. We have
obtained VISIR-VLT mid-IR images of four heavily obscured post-AGB objects
barely resolved in previous Spitzer IRAC observations to analyze their
morphology and physical conditions across the mid-IR. The VISIR-VLT images have
been deconvolved, flux calibrated, and used to construct RGB composite pictures
as well as color and optical depth maps that allow us to study the morphology
and physical properties of the extended emission of these sources. We have
detected extended emission from the four objects in our sample and resolved it
into several structural components that are greatly enhanced in the temperature
and optical depth maps. They reveal the presence of asymmetry in three young
PNe (IRAS 15534-5422, IRAS 17009-4154, and IRAS 18454+0001), where the
asymmetries can be associated with dusty torii and slightly bipolar outflows.
The fourth source (IRAS 18229-1127), a possible post-AGB star, is better
described as a rhomboidal detached shell. The heavily obscured sources in our
sample do not show extreme axisymmetric morphologies. This is at odds with the
expectation of highly asymmetrical morphologies in post-AGB sources descending
from massive PN progenitors. The sources presented in this paper may be
sampling critical early phases in the evolution of massive PN progenitors,
before extreme asymmetries develop.Comment: 9 pages, 4 figure
Intense Mass Loss from C-rich AGB Stars at low Metallicity?
We argue that the energy injection of pulsations may be of greater importance
to the mass-loss rate of AGB stars than metallicity, and that the mass-loss
trend with metallicity is not as simple as sometimes assumed. Using our
detailed radiation hydrodynamical models that include dust formation, we
illustrate the effects of pulsation energy on wind properties. We find that the
mass-loss rate scales with the kinetic energy input by pulsations as long as a
dust-saturated wind does not occur, and all other stellar parameters are kept
constant. This includes the absolute abundance of condensible carbon (not bound
in CO), which is more relevant than keeping the C/O-ratio constant when
comparing stars of different metallicity. The pressure and temperature
gradients in the atmospheres of stars, become steeper and flatter,
respectively, when the metallicity is reduced, while the radius where the
atmosphere becomes opaque is typically associated with a higher gas pressure.
This effect can be compensated for by adjusting the velocity amplitude of the
variable inner boundary (piston), which is used to simulate the effects of
pulsation, to obtain models with comparable kinetic-energy input. Hence, it is
more relevant to compare models with similar energy-injections than of similar
velocity amplitude. Since there is no evidence for weaker pulsations in
low-metallicity AGB stars, we conclude that it is unlikely that low-metallicity
C-stars have a lower mass-loss rate, than their more metal-rich counterparts
with similar stellar parameters, as long as they have a comparable amount of
condensible carbon.Comment: 4 pages, 3 figures. Accepted for publication in A&A. Updated after
language editing. Additional typos fixe
Study of the inner dust envelope and stellar photosphere of the AGB star R Doradus using SPHERE/ZIMPOL
We use high-angular-resolution images obtained with SPHERE/ZIMPOL to study
the photosphere, the warm molecular layer, and the inner wind of the close-by
oxygen-rich AGB star R Doradus. We present observations in filters V,
cntH, and cnt820 and investigate the surface brightness distribution of
the star and of the polarised light produced in the inner envelope. Thanks to
second-epoch observations in cntH, we are able to see variability on
the stellar photosphere. We find that in the first epoch the surface brightness
of R Dor is asymmetric in V and cntH, the filters where molecular
opacity is stronger, while in cnt820 the surface brightness is closer to being
axisymmetric. The second-epoch observations in cntH show that the
morphology of R Dor changes completely in a timespan of 48 days to a more
axisymmetric and compact configuration. The polarised intensity is asymmetric
in all epochs and varies by between a factor of 2.3 and 3.7 with azimuth for
the different images. We fit the radial profile of the polarised intensity
using a spherically symmetric model and a parametric description of the dust
density profile, . On average, we find exponents of
that correspond to a much steeper density profile than that of
a wind expanding at constant velocity. The dust densities we derive imply an
upper limit for the dust-to-gas ratio of at 5.0
. Given the uncertainties in observations and models, this value is
consistent with the minimum values required by wind-driving models for the
onset of a wind, of . However, if the steep density
profile we find extends to larger distances from the star, the dust-to-gas
ratio will quickly become too small for the wind of R Dor to be driven by the
grains that produce the scattered light.Comment: 10 pages, 8 figures, 4 table
Carbon enrichment of the evolved stars in the Sagittarius dwarf spheroidal
We present spectra of 1142 colour-selected stars in the direction of the
Sagittarius Dwarf Spheroidal (Sgr dSph) galaxy, of which 1058 were taken with
VLT/FLAMES multi-object spectrograph and 84 were taken with the SAAO Radcliffe
1.9-m telescope grating spectrograph. Spectroscopic membership is confirmed (at
>99% confidence) for 592 stars on the basis of their radial velocity, and
spectral types are given. Very slow rotation is marginally detected around the
galaxy's major axis. We identify five S stars and 23 carbon stars, of which all
but four carbon stars are newly-determined and all but one (PQ Sgr) are likely
Sgr dSph members. We examine the onset of carbon-richness in this metal-poor
galaxy in the context of stellar models. We compare the stellar death rate (one
star per 1000-1700 years) to known planetary nebula dynamical ages and find
that the bulk population produce the observed (carbon-rich) planetary nebulae.
We compute average lifetimes of S and carbon stars as 60-250 and 130-500 kyr,
compared to a total thermal-pulsing asymptotic giant branch lifetime of
530-1330 kyr. We conclude by discussing the return of carbon-rich material to
the ISM.Comment: 14 pages, 10 figures, accepted MNRA
A near-infrared study of AGB and red giant stars in the Leo I dSph galaxy
A near-infrared imaging study of the evolved stellar populations in the dwarf
spheroidal galaxy Leo I is presented. Based on JHK observations obtained with
the WFCAM wide-field array at the UKIRT telescope, we build a near-infrared
photometric catalogue of red giant branch (RGB) and asymptotic giant branch
(AGB) stars in Leo I over a 13.5 arcmin square area. The V-K colours of RGB
stars, obtained by combining the new data with existing optical observations,
allow us to derive a distribution of global metallicity [M/H] with average
[M/H] = -1.51 (uncorrected) or [M/H] = -1.24 +/- 0.05 (int) +/- 0.15 (syst)
after correction for the mean age of Leo I stars. This is consistent with the
results from spectroscopy once stellar ages are taken into account. Using a
near-infrared two-colour diagram, we discriminate between carbon- and
oxygen-rich AGB stars and obtain a clean separation from Milky Way foreground
stars. We reveal a concentration of C-type AGB stars relative to the red giant
stars in the inner region of the galaxy, which implies a radial gradient in the
intermediate-age (1-3 Gyr) stellar populations. The numbers and luminosities of
the observed carbon- and oxygen-rich AGB stars are compared with those
predicted by evolutionary models including the thermally-pulsing AGB phase, to
provide new constraints to the models for low-metallicity stars. We find an
excess in the predicted number of C stars fainter than the RGB tip, associated
to a paucity of brighter ones. The number of O-rich AGB stars is roughly
consistent with the models, yet their predicted luminosity function is extended
to brighter luminosity. It appears likely that the adopted evolutionary models
overestimate the C star lifetime and underestimate their K-band luminosity.Comment: MNRAS, accepte
- …