7 research outputs found

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Get PDF
    Phagocytosis is a fundamental process in marine ecosystems by which prey organisms are consumed and their biomass incorporated in food webs or remineralized. However, studies searching for the genes underlying this key ecological process in free-living phagocytizing protists are still scarce, in part due to the lack of appropriate ecological models. Our reanalysis of recent molecular datasets revealed that the cultured heterotrophic flagellate Cafeteria burkhardae is widespread in the global oceans, which prompted us to design a transcriptomics study with this species, grown with the cultured flavobacterium Dokdonia sp. We compared the gene expression between exponential and stationary phases, which were complemented with three starvation by dilution phases that appeared as intermediate states. We found distinct expression profiles in each condition and identified 2056 differentially expressed genes between exponential and stationary samples. Upregulated genes at the exponential phase were related to DNA duplication, transcription and translational machinery, protein remodeling, respiration and phagocytosis, whereas upregulated genes in the stationary phase were involved in signal transduction, cell adhesion, and lipid metabolism. We identified a few highly expressed phagocytosis genes, like peptidases and proton pumps, which could be used to target this ecologically relevant process in marine ecosystems

    Comparative genomics reveals new functional insights in uncultured MAST species

    Get PDF
    Heterotrophic lineages of stramenopiles exhibit enormous diversity in morphology, lifestyle, and habitat. Among them, the marine stramenopiles (MASTs) represent numerous independent lineages that are only known from environmental sequences retrieved from marine samples. The core energy metabolism characterizing these unicellular eukaryotes is poorly understood. Here, we used single-cell genomics to retrieve, annotate, and compare the genomes of 15 MAST species, obtained by coassembling sequences from 140 individual cells sampled from the marine surface plankton. Functional annotations from their gene repertoires are compatible with all of them being phagocytotic. The unique presence of rhodopsin genes in MAST species, together with their widespread expression in oceanic waters, supports the idea that MASTs may be capable of using sunlight to thrive in the photic ocean. Additional subsets of genes used in phagocytosis, such as proton pumps for vacuole acidification and peptidases for prey digestion, did not reveal particular trends in MAST genomes as compared with nonphagocytotic stramenopiles, except a larger presence and diversity of V-PPase genes. Our analysis reflects the complexity of phagocytosis machinery in microbial eukaryotes, which contrasts with the well-defined set of genes for photosynthesis. These new genomic data provide the essential framework to study ecophysiology of uncultured species and to gain better understanding of the function of rhodopsins and related carotenoids in stramenopiles

    Data from: Comparative authentication of Hypericum perforatum herbal products using DNA metabarcoding, TLC and HPLC-MS

    No full text
    Many herbal products have a long history of use, but there are increasing concerns over product efficacy, safety and quality in the wake of recent cases exposing discrepancies between labeling and constituents. When it comes to St. John’s wort (Hypericum perforatum L.) herbal products, there is limited oversight, frequent off-label use and insufficient monitoring of adverse drug reactions. In this study, we use amplicon metabarcoding (AMB) to authenticate 78 H. perforatum herbal products and evaluate its ability to detect substitution compared to standard methods using thin-layer chromatography (TLC) and high performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Hypericum perforatum was detected in 68% of the products using AMB. Furthermore, AMB detected incongruence between constituent species and those listed on the label in all products. Neither TLC nor HPLC-MS could be used to unambiguously identify H. perforatum. They are accurate methods for authenticating presence of the target compounds, but have limited efficiency in detecting infrageneric substitution and do not yield any information on other plant ingredients in the products. Random post-marketing AMB of herbal products by regulatory agencies could raise awareness among consumers of substitution and would provide an incentive to manufacturers to increase quality control from raw ingredients to commercialized products

    L'adaptació de nínxol va promoure la diversificació evolutiva del depredadors petits del oceà

    No full text
    Unicellular eukaryotic predators play a crucial role in the functioning of the ocean ecosystem by recycling nutrients and energy that are channeled to upper trophic levels. Traditionally, these evolutionarily diverse organisms have been combined into a single functional group (heterotrophic flagellates), overlooking their organismal differences. Here, we investigated four evolutionarily related species belonging to one cosmopolitan group of uncultured marine picoeukaryotic predators: marine stramenopiles (MAST)-4 (species A, B, C, and E). Co-occurrence and distribution analyses in the global surface ocean indicated contrasting patterns in MAST-4A and C, suggesting adaptation to different temperatures. We then investigated whether these spatial distribution patterns were mirrored by MAST-4 genomic content using single-cell genomics. Analyses of 69 single cells recovered 66 to 83% of the MAST-4A/B/C/E genomes, which displayed substantial interspecies divergence. MAST-4 genomes were similar in terms of broad gene functional categories, but they differed in enzymes of ecological relevance, such as glycoside hydrolases (GHs), which are part of the food degradation machinery in MAST-4. Interestingly, MAST-4 species featuring a similar GH composition (A and C) coexcluded each other in the surface global ocean, while species with a different set of GHs (B and C) appeared to be able to coexist, suggesting further niche diversification associated with prey digestion. We propose that differential niche adaptation to temperature and prey type has promoted adaptive evolutionary diversification in MAST-4. We show that minute ocean predators from the same phylogenetic group may have different biogeography and genomic content, which needs to be accounted for to better comprehend marine food webs.Postprint (published version

    Outcomes at 7 Years of Age of Former Very Preterm Neonates with Repeated Surfactant Treatment for Prolonged Respiratory Distress in the Neonatal Period

    No full text
    International audienceThis study aimed at evaluating the 7-year outcomes of 118 very preterm newborns (VPNs, gestational age = 26 ± 1.4 w) involved in a randomized controlled trial. They presented neonatal respiratory distress (RDS), requiring ventilation for 14 ± 2 days post-natal age (PNA). A repeated instillation of 200 mg/kg poractant alfa (SURF) did not improve early bronchopulmonary dysplasia, but the SURF infants needed less re-hospitalization than the controls for respiratory problems at 1- and 2-year PNA. There was no growth difference at 7.1 ± 0.3 years between 41 SURF infants and 36 controls (80% of the eligible children), and 7.9% SURF infants vs. 28.6% controls presented asthma (p = 0.021). The children underwent cognitive assessment (WISC IV) and pulmonary function testing (PFT), measuring their spirometry, lung volume, and airway resistance. The spirometry measures showed differences (p 85 in both groups. Repeated surfactant treatment in VPNs presenting severe RDS led to the attenuation of early lung injuries, with an impact on long-term pulmonary sequelae, without differences in neurodevelopmental outcomes
    corecore