120 research outputs found

    Enumeration of distinct mechanically stable disk packings in small systems

    Full text link
    We create mechanically stable (MS) packings of bidisperse disks using an algorithm in which we successively grow or shrink soft repulsive disks followed by energy minimization until the overlaps are vanishingly small. We focus on small systems because this enables us to enumerate nearly all distinct MS packings. We measure the probability to obtain a MS packing at packing fraction ϕ\phi and find several notable results. First, the probability is highly nonuniform. When averaged over narrow packing fraction intervals, the most probable MS packing occurs at the highest ϕ\phi and the probability decays exponentially with decreasing ϕ\phi. Even more striking, within each packing-fraction interval, the probability can vary by many orders of magnitude. By using two different packing-generation protocols, we show that these results are robust and the packing frequencies do not change qualitatively with different protocols.Comment: 4 pages, 3 figures, Conference Proceedings for X International Workshop on Disordered System

    Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy

    Get PDF
    SARS-CoV-2 emerged from animals and is now easily transmitted between people. Sporadic detection of natural cases in animals alongside successful experimental infections of pets, such as cats, ferrets and dogs, raises questions about the susceptibility of animals under natural conditions of pet ownership. Here, we report a large-scale study to assess SARS-CoV-2 infection in 919 companion animals living in northern Italy, sampled at a time of frequent human infection. No animals tested PCR positive. However, 3.3% of dogs and 5.8% of cats had measurable SARS-CoV-2 neutralizing antibody titers, with dogs from COVID-19 positive households being significantly more likely to test positive than those from COVID-19 negative households. Understanding risk factors associated with this and their potential to infect other species requires urgent investigation

    Bacterial Diversity in Oral Samples of Children in Niger with Acute Noma, Acute Necrotizing Gingivitis, and Healthy Controls

    Get PDF
    Noma is a devastating gangrenous disease that leads to severe facial disfigurement, but its cause remains unknown. It is associated with high morbidity and mortality and affects almost exclusively young children living in remote areas of developing countries, particularly in Africa. Several factors have been linked to the disease, including malnutrition, immune dysfunction, lack of oral hygiene, and lesions of the mucosal gingival barrier, particularly the presence of acute necrotizing gingivitis, and a potentially non-identified bacterial factor acting as a trigger for the disease. This study assessed the total bacterial diversity present in 69 oral samples of 55 children in Niger with or without acute noma or acute necrotizing gingivitis using culture-independent molecular methods. Analysis of bacterial composition and frequency showed that diseased and healthy site bacterial communities are composed of similar bacteria, but differ in the prevalence of a limited group of phylotypes. We failed to identify a causative infectious agent for noma or acute necrotizing gingivitis as the most plausible pathogens for both conditions were present also in sizeable numbers in healthy subjects. Most likely, the disease is initiated by a synergistic combination of several bacterial species, and not a single agent

    Dinucleotide controlled null models for comparative RNA gene prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative prediction of RNA structures can be used to identify functional noncoding RNAs in genomic screens. It was shown recently by Babak <it>et al</it>. [BMC Bioinformatics. 8:33] that RNA gene prediction programs can be biased by the genomic dinucleotide content, in particular those programs using a thermodynamic folding model including stacking energies. As a consequence, there is need for dinucleotide-preserving control strategies to assess the significance of such predictions. While there have been randomization algorithms for single sequences for many years, the problem has remained challenging for multiple alignments and there is currently no algorithm available.</p> <p>Results</p> <p>We present a program called SISSIz that simulates multiple alignments of a given average dinucleotide content. Meeting additional requirements of an accurate null model, the randomized alignments are on average of the same sequence diversity and preserve local conservation and gap patterns. We make use of a phylogenetic substitution model that includes overlapping dependencies and site-specific rates. Using fast heuristics and a distance based approach, a tree is estimated under this model which is used to guide the simulations. The new algorithm is tested on vertebrate genomic alignments and the effect on RNA structure predictions is studied. In addition, we directly combined the new null model with the RNAalifold consensus folding algorithm giving a new variant of a thermodynamic structure based RNA gene finding program that is not biased by the dinucleotide content.</p> <p>Conclusion</p> <p>SISSIz implements an efficient algorithm to randomize multiple alignments preserving dinucleotide content. It can be used to get more accurate estimates of false positive rates of existing programs, to produce negative controls for the training of machine learning based programs, or as standalone RNA gene finding program. Other applications in comparative genomics that require randomization of multiple alignments can be considered.</p> <p>Availability</p> <p>SISSIz is available as open source C code that can be compiled for every major platform and downloaded here: <url>http://sourceforge.net/projects/sissiz</url>.</p

    Genetic Structure of Two Protist Species (Myxogastria, Amoebozoa) Suggests Asexual Reproduction in Sexual Amoebae

    Get PDF
    Plasmodial slime molds (Myxogastria or Myxomycetes) are common and widespread unicellular organisms that are commonly assumed to have a sexual life cycle culminating with the formation of often macroscopic fruiting bodies that efficiently disseminate spores. However, laboratory studies based on mating compatibility revealed the coexistence of asexual as well as sexual strains. To test this hypothesis in natural populations, we investigated the genetic variability of two species of the genus Lamproderma. Detailed ecological relevés were carried out in 2007 and 2009 in several deep ravines in the Elbsandsteingebirge (Saxony, south-eastern Germany). Morphological characters of 93 specimens of Lamproderma were recorded and genetic analyses, based on the small subunit ribosomal gene, the internal transcribed spacer 1 and partial elongation factor 1α sequences were carried out for 52 specimens. Genetic analyses showed the existence of two major clades, each composed of several discrete lineages. Most of these lineages were composed of several identical sequences (SSU, ITS 1 and EF-1α) which is explained best by an asexual mode of reproduction. Detrended Correspondence Analysis of morphological characters revealed two morphospecies that corresponded to the two major clades, except for one genotype (Lc6), thus challenging the morphospecies concept. Genetic patterns were not related to the geographical distribution: specimens belonging to the same genotype were found in distinct ravines, suggesting effective long-distance dispersal via spores, except for the Lc6 genotype which was found only in one ravine. Implications for the morphological and biological species concept are discussed

    Selective Impairment of TH17-Differentiation and Protection against Autoimmune Arthritis after Overexpression of BCL2A1 in T Lymphocytes

    Get PDF
    The inhibition of apoptotic cell death in T cells through the dysregulated expression of BCL2 family members has been associated with the protection against the development of different autoimmune diseases. However, multiple mechanisms were proposed to be responsible for such protective effect. The purpose of this study was to explore the effect of the Tcell overexpression of BCL2A1, an anti-apoptotic BCL2 family member without an effect on cell cycle progression, in the development of collagen-induced arthritis. Our results demonstrated an attenuated development of arthritis in these transgenic mice. The protective effect was unrelated to the suppressive activity of regulatory T cells but it was associated with a defective activation of p38 mitogen-activated protein kinase in CD4+ cells after in vitro TCR stimulation. In addition, the in vitro and in vivo TH17 differentiation were impaired in BCL2A1 transgenic mice. Taken together, we demonstrated here a previously unknown role for BCL2A1 controlling the activation of CD4+ cells and their differentiation into pathogenic proinflammatory TH17 cells and identified BCL2A1 as a potential target in the control of autoimmune/inflammatory diseases

    Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy

    Get PDF
    AbstractSARS-CoV-2 originated in animals and is now easily transmitted between people. Sporadic detection of natural cases in animals alongside successful experimental infections of pets, such as cats, ferrets and dogs, raises questions about the susceptibility of animals under natural conditions of pet ownership. Here we report a large-scale study to assess SARS-CoV-2 infection in 817 companion animals living in northern Italy, sampled at a time of frequent human infection. No animals tested PCR positive. However, 3.4% of dogs and 3.9% of cats had measurable SARS-CoV-2 neutralizing antibody titers, with dogs from COVID-19 positive households being significantly more likely to test positive than those from COVID-19 negative households. Understanding risk factors associated with this and their potential to infect other species requires urgent investigation.One Sentence SummarySARS-CoV-2 antibodies in pets from Italy.</jats:sec

    Molecular Phylogeny Restores the Supra-Generic Subdivision of Homoscleromorph Sponges (Porifera, Homoscleromorpha)

    Get PDF
    Homoscleromorpha is the fourth major sponge lineage, recently recognized to be distinct from the Demospongiae. It contains <100 described species of exclusively marine sponges that have been traditionally subdivided into 7 genera based on morphological characters. Because some of the morphological features of the homoscleromorphs are shared with eumetazoans and are absent in other sponges, the phylogenetic position of the group has been investigated in several recent studies. However, the phylogenetic relationships within the group remain unexplored by modern methods.Here we describe the first molecular phylogeny of Homoscleromorpha based on nuclear (18S and 28S rDNA) and complete mitochondrial DNA sequence data that focuses on inter-generic relationships. Our results revealed two robust clades within this group, one containing the spiculate species (genera Plakina, Plakortis, Plakinastrella and Corticium) and the other containing aspiculate species (genera Oscarella and Pseudocorticium), thus rejecting a close relationship between Pseudocorticium and Corticium. Among the spiculate species, we found affinities between the Plakortis and Plakinastrella genera, and between the Plakina and Corticium. The validity of these clades is furthermore supported by specific morphological characters, notably the type of spicules. Furthermore, the monophyly of the Corticium genus is supported while the monophyly of Plakina is not.As the result of our study we propose to restore the pre-1995 subdivision of Homoscleromorpha into two families: Plakinidae Schulze, 1880 for spiculate species and Oscarellidae Lendenfeld, 1887 for aspiculate species that had been rejected after the description of the genus Pseudocorticium. We also note that the two families of homoscleromorphs exhibit evolutionary stable, but have drastically distinct mitochondrial genome organizations that differ in gene content and gene order

    Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two component systems (TCS) are signal transduction pathways which typically consist of a sensor histidine kinase (HK) and a response regulator (RR). In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in <it>Lactobacillaceae </it>and <it>Leuconostocaceae</it>, two families belonging to the group of lactic acid bacteria (LAB). LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest.</p> <p>Results</p> <p>The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in <it>Lactobacillus helveticus </it>and 17 in <it>Lactobacillus casei</it>. The OmpR/IIIA family was the most prevalent in <it>Lactobacillaceae </it>accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these <it>Lactobacillaceae </it>by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in <it>Lactobacillaceae</it>.</p> <p>Conclusions</p> <p>The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in <it>Lactobacillaceae</it>, although some HGT events cannot be ruled out. This would agree with the genomic analyses of <it>Lactobacillales </it>which show that gene losses have been a major trend in the evolution of this group.</p

    Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization

    Get PDF
    Recently we reported that the BH3-only proteins Bim and Noxa bind tightly but transiently to the BH3-binding groove of Bak to initiate Bak homo-oligomerization. However, it is unclear how such tight binding can induce Bak homo-oligomerization. Here we report the ligand-induced Bak conformational changes observed in 3D models of Noxa·Bak and Bim·Bak refined by molecular dynamics simulations. In particular, upon binding to the BH3-binding groove, Bim and Noxa induce a large conformational change of the loop between helices 1 and 2 and in turn partially expose a remote groove between helices 1 and 6 in Bak. These observations, coupled with the reported experimental data, suggest formation of a pore-forming Bak octamer, in which the BH3-binding groove is at the interface on one side of each monomer and the groove between helices 1 and 6 is at the interface on the opposite side, initiated by ligand binding to the BH3-binding groove
    corecore