154 research outputs found
Learning to rank from medical imaging data
Medical images can be used to predict a clinical score coding for the
severity of a disease, a pain level or the complexity of a cognitive task. In
all these cases, the predicted variable has a natural order. While a standard
classifier discards this information, we would like to take it into account in
order to improve prediction performance. A standard linear regression does
model such information, however the linearity assumption is likely not be
satisfied when predicting from pixel intensities in an image. In this paper we
address these modeling challenges with a supervised learning procedure where
the model aims to order or rank images. We use a linear model for its
robustness in high dimension and its possible interpretation. We show on
simulations and two fMRI datasets that this approach is able to predict the
correct ordering on pairs of images, yielding higher prediction accuracy than
standard regression and multiclass classification techniques
Sparse classification with MRI based markers for neuromuscular disease categorization
International audienceIn this paper, we present a novel method for disease classification between two patient populations based on features extracted from Magnetic Resonance Imaging (MRI) data. Anatomically meaningful features are extracted from structural data (T1- and T2-weighted MR images) and Diffusion Tensor Imaging (DTI) data, and used to train a new machine learning algorithm, the k-support SVM (ksup-SVM). The k-support regularized SVM has an inherent feature selection property, and thus it eliminates the requirement for a separate feature selection step. Our dataset consists of patients that suffer from facioscapulohumeral muscular dystrophy (FSH) and Myotonic muscular dystrophy type 1 (DM1) and our proposed method achieves a high performance. More specifically, it achieves a mean Area Under the Curve (AUC) of 0.7141 and mean accuracy 77% ± 0.013. Moreover, we provide a sparsity visualization of the features in order to indentify their discriminative value. The results suggest the potential of the combined use of MR markers to diagnose myopathies, and the general utility of the ksup-SVM. Source code is also available at https://gitorious.org/ksup-svm
Optimizing real time fMRI neurofeedback for therapeutic discovery and development
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health, the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain–behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders
Facile Fabrication of Ultrafine Hollow Silica and Magnetic Hollow Silica Nanoparticles by a Dual-Templating Approach
The development of synthetic process for hollow silica materials is an issue of considerable topical interest. While a number of chemical routes are available and are extensively used, the diameter of hollow silica often large than 50 nm. Here, we report on a facial route to synthesis ultrafine hollow silica nanoparticles (the diameter of ca. 24 nm) with high surface area by using cetyltrimethylammmonium bromide (CTAB) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as co-templates and subsequent annealing treatment. When the hollow magnetite nanoparticles were introduced into the reaction, the ultrafine magnetic hollow silica nanoparticles with the diameter of ca. 32 nm were obtained correspondingly. Transmission electron microscopy studies confirm that the nanoparticles are composed of amorphous silica and that the majority of them are hollow
Assessing hippocampal functional reserve in temporal lobe epilepsy:A multi-voxel pattern analysis of fMRI data
Assessing the functional reserve of key memory structures in the medial temporal lobes (MTL) of pre-surgical patients with intractable temporal lobe epilepsy (TLE) remains a challenge. Conventional functional MRI (fMRI) memory paradigms have yet to fully convince of their ability to confidently assess the risk of a post-surgical amnesia. An alternative fMRI analysis method, multi-voxel pattern analysis (MVPA), focuses on the patterns of activity across voxels in specific brain regions that are associated with individual memory traces. This method makes it possible to investigate whether the hippocampus and related structures contralateral to any proposed surgery are capable of laying down and representing specific memories. Here we used MVPA-fMRI to assess the functional integrity of the hippocampi and MTL in patients with long-standing medically refractory TLE associated with unilateral hippocampal sclerosis (HS). Patients were exposed to movie clips of everyday events prior to scanning, which they subsequently recalled during high-resolution fMRI. MTL structures were delineated and pattern classifiers were trained to learn the patterns of brain activity across voxels associated with each memory. Predictable patterns of activity across voxels associated with specific memories could be detected in MTL structures, including the hippocampus, on the side contralateral to the HS, indicating their functional viability. By contrast, no discernible memory representations were apparent in the sclerotic hippocampus, but adjacent MTL regions contained detectable information about the memories. These findings suggest that MVPA in fMRI memory studies of TLE can indicate hippocampal functional reserve and may be useful to predict the effects of hippocampal resection in individual patients
Recursive Cluster Elimination Based Support Vector Machine for Disease State Prediction Using Resting State Functional and Effective Brain Connectivity
Brain state classification has been accomplished using features such as voxel intensities, derived from functional magnetic resonance imaging (fMRI) data, as inputs to efficient classifiers such as support vector machines (SVM) and is based on the spatial localization model of brain function. With the advent of the connectionist model of brain function, features from brain networks may provide increased discriminatory power for brain state classification.In this study, we introduce a novel framework where in both functional connectivity (FC) based on instantaneous temporal correlation and effective connectivity (EC) based on causal influence in brain networks are used as features in an SVM classifier. In order to derive those features, we adopt a novel approach recently introduced by us called correlation-purged Granger causality (CPGC) in order to obtain both FC and EC from fMRI data simultaneously without the instantaneous correlation contaminating Granger causality. In addition, statistical learning is accelerated and performance accuracy is enhanced by combining recursive cluster elimination (RCE) algorithm with the SVM classifier. We demonstrate the efficacy of the CPGC-based RCE-SVM approach using a specific instance of brain state classification exemplified by disease state prediction. Accordingly, we show that this approach is capable of predicting with 90.3% accuracy whether any given human subject was prenatally exposed to cocaine or not, even when no significant behavioral differences were found between exposed and healthy subjects.The framework adopted in this work is quite general in nature with prenatal cocaine exposure being only an illustrative example of the power of this approach. In any brain state classification approach using neuroimaging data, including the directional connectivity information may prove to be a performance enhancer. When brain state classification is used for disease state prediction, our approach may aid the clinicians in performing more accurate diagnosis of diseases in situations where in non-neuroimaging biomarkers may be unable to perform differential diagnosis with certainty
Comparative Study of SVM Methods Combined with Voxel Selection for Object Category Classification on fMRI Data
BACKGROUND: Support vector machine (SVM) has been widely used as accurate and reliable method to decipher brain patterns from functional MRI (fMRI) data. Previous studies have not found a clear benefit for non-linear (polynomial kernel) SVM versus linear one. Here, a more effective non-linear SVM using radial basis function (RBF) kernel is compared with linear SVM. Different from traditional studies which focused either merely on the evaluation of different types of SVM or the voxel selection methods, we aimed to investigate the overall performance of linear and RBF SVM for fMRI classification together with voxel selection schemes on classification accuracy and time-consuming. METHODOLOGY/PRINCIPAL FINDINGS: Six different voxel selection methods were employed to decide which voxels of fMRI data would be included in SVM classifiers with linear and RBF kernels in classifying 4-category objects. Then the overall performances of voxel selection and classification methods were compared. Results showed that: (1) Voxel selection had an important impact on the classification accuracy of the classifiers: in a relative low dimensional feature space, RBF SVM outperformed linear SVM significantly; in a relative high dimensional space, linear SVM performed better than its counterpart; (2) Considering the classification accuracy and time-consuming holistically, linear SVM with relative more voxels as features and RBF SVM with small set of voxels (after PCA) could achieve the better accuracy and cost shorter time. CONCLUSIONS/SIGNIFICANCE: The present work provides the first empirical result of linear and RBF SVM in classification of fMRI data, combined with voxel selection methods. Based on the findings, if only classification accuracy was concerned, RBF SVM with appropriate small voxels and linear SVM with relative more voxels were two suggested solutions; if users concerned more about the computational time, RBF SVM with relative small set of voxels when part of the principal components were kept as features was a better choice
Using fMRI Brain Activation to Identify Cognitive States Associated with Perception of Tools and Dwellings
Previous studies have succeeded in identifying the cognitive state corresponding to the perception of a set of depicted categories, such as tools, by analyzing the accompanying pattern of brain activity, measured with fMRI. The current research focused on identifying the cognitive state associated with a 4s viewing of an individual line drawing (1 of 10 familiar objects, 5 tools and 5 dwellings, such as a hammer or a castle). Here we demonstrate the ability to reliably (1) identify which of the 10 drawings a participant was viewing, based on that participant's characteristic whole-brain neural activation patterns, excluding visual areas; (2) identify the category of the object with even higher accuracy, based on that participant's activation; and (3) identify, for the first time, both individual objects and the category of the object the participant was viewing, based only on other participants' activation patterns. The voxels important for category identification were located similarly across participants, and distributed throughout the cortex, focused in ventral temporal perceptual areas but also including more frontal association areas (and somewhat left-lateralized). These findings indicate the presence of stable, distributed, communal, and identifiable neural states corresponding to object concepts
Optimizing Preprocessing and Analysis Pipelines for Single-Subject fMRI: 2. Interactions with ICA, PCA, Task Contrast and Inter-Subject Heterogeneity
A variety of preprocessing techniques are available to correct subject-dependant artifacts in fMRI, caused by head motion and physiological noise. Although it has been established that the chosen preprocessing steps (or “pipeline”) may significantly affect fMRI results, it is not well understood how preprocessing choices interact with other parts of the fMRI experimental design. In this study, we examine how two experimental factors interact with preprocessing: between-subject heterogeneity, and strength of task contrast. Two levels of cognitive contrast were examined in an fMRI adaptation of the Trail-Making Test, with data from young, healthy adults. The importance of standard preprocessing with motion correction, physiological noise correction, motion parameter regression and temporal detrending were examined for the two task contrasts. We also tested subspace estimation using Principal Component Analysis (PCA), and Independent Component Analysis (ICA). Results were obtained for Penalized Discriminant Analysis, and model performance quantified with reproducibility (R) and prediction metrics (P). Simulation methods were also used to test for potential biases from individual-subject optimization. Our results demonstrate that (1) individual pipeline optimization is not significantly more biased than fixed preprocessing. In addition, (2) when applying a fixed pipeline across all subjects, the task contrast significantly affects pipeline performance; in particular, the effects of PCA and ICA models vary with contrast, and are not by themselves optimal preprocessing steps. Also, (3) selecting the optimal pipeline for each subject improves within-subject (P,R) and between-subject overlap, with the weaker cognitive contrast being more sensitive to pipeline optimization. These results demonstrate that sensitivity of fMRI results is influenced not only by preprocessing choices, but also by interactions with other experimental design factors. This paper outlines a quantitative procedure to denoise data that would otherwise be discarded due to artifact; this is particularly relevant for weak signal contrasts in single-subject, small-sample and clinical datasets
Mapping Informative Clusters in a Hierarchial Framework of fMRI Multivariate Analysis
Pattern recognition methods have become increasingly popular in fMRI data analysis, which are powerful in discriminating between multi-voxel patterns of brain activities associated with different mental states. However, when they are used in functional brain mapping, the location of discriminative voxels varies significantly, raising difficulties in interpreting the locus of the effect. Here we proposed a hierarchical framework of multivariate approach that maps informative clusters rather than voxels to achieve reliable functional brain mapping without compromising the discriminative power. In particular, we first searched for local homogeneous clusters that consisted of voxels with similar response profiles. Then, a multi-voxel classifier was built for each cluster to extract discriminative information from the multi-voxel patterns. Finally, through multivariate ranking, outputs from the classifiers were served as a multi-cluster pattern to identify informative clusters by examining interactions among clusters. Results from both simulated and real fMRI data demonstrated that this hierarchical approach showed better performance in the robustness of functional brain mapping than traditional voxel-based multivariate methods. In addition, the mapped clusters were highly overlapped for two perceptually equivalent object categories, further confirming the validity of our approach. In short, the hierarchical framework of multivariate approach is suitable for both pattern classification and brain mapping in fMRI studies
- …