1,363 research outputs found

    Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation

    Full text link
    It is pointed out that relativistic classical electron theory with classical electromagnetic zero-point radiation has a scaling symmetry which is suitable for understanding the equilibrium behavior of classical thermal radiation at a spectrum other than the Rayleigh-Jeans spectrum. In relativistic classical electron theory, the masses of the particles are the only scale-giving parameters associated with mechanics while the action-angle variables are scale invariant. The theory thus separates the interaction of the action variables of matter and radiation from the scale-giving parameters. Classical zero-point radiation is invariant under scattering by the charged particles of relativistic classical electron theory. The basic ideas of the matter -radiation interaction are illustrated in a simple relativistic classical electromagnetic example.Comment: 18 page

    Target Space Duality between Simple Compact Lie Groups and Lie Algebras under the Hamiltonian Formalism: I. Remnants of Duality at the Classical Level

    Get PDF
    It has been suggested that a possible classical remnant of the phenomenon of target-space duality (T-duality) would be the equivalence of the classical string Hamiltonian systems. Given a simple compact Lie group GG with a bi-invariant metric and a generating function Γ\Gamma suggested in the physics literature, we follow the above line of thought and work out the canonical transformation Φ\Phi generated by Γ\Gamma together with an \Ad-invariant metric and a B-field on the associated Lie algebra g\frak g of GG so that GG and g\frak g form a string target-space dual pair at the classical level under the Hamiltonian formalism. In this article, some general features of this Hamiltonian setting are discussed. We study properties of the canonical transformation Φ\Phi including a careful analysis of its domain and image. The geometry of the T-dual structure on g\frak g is lightly touched.Comment: Two references and related comments added, also some typos corrected. LaTeX and epsf.tex, 36 pages, 4 EPS figures included in a uuencoded fil

    A classical explanation of quantization

    Full text link
    In the context of our recently developed emergent quantum mechanics, and, in particular, based on an assumed sub-quantum thermodynamics, the necessity of energy quantization as originally postulated by Max Planck is explained by means of purely classical physics. Moreover, under the same premises, also the energy spectrum of the quantum mechanical harmonic oscillator is derived. Essentially, Planck's constant h is shown to be indicative of a particle's "zitterbewegung" and thus of a fundamental angular momentum. The latter is identified with quantum mechanical spin, a residue of which is thus present even in the non-relativistic Schroedinger theory.Comment: 20 pages; version accepted for publication in Foundations of Physic

    T-Duality and Penrose limits of spatially homogeneous and inhomogeneous cosmologies

    Get PDF
    Penrose limits of inhomogeneous cosmologies admitting two abelian Killing vectors and their abelian T-duals are found in general. The wave profiles of the resulting plane waves are given for particular solutions. Abelian and non-abelian T-duality are used as solution generating techniques. Furthermore, it is found that unlike in the case of abelian T-duality, non-abelian T-duality and taking the Penrose limit are not commutative procedures.Comment: 16 pages, 4 figures. Discussion on non-abelian T-duality expande

    On Some New Black String Solutions in Three Dimensions

    Get PDF
    We derive several new solutions in three-dimensional stringy gravity. The solutions are obtained with the help of string duality transformations. They represent stationary configurations with horizons, and are surrounded by (quasi) topologically massive Abelian gauge hair, in addition to the dilaton and the Kalb-Ramond axion. Our analysis suggests that there exists a more general family, where our solutions are special limits. Finally, we use the generating technique recently proposed by Garfinkle to construct a traveling wave on the extremal variant of one of our solutions.Comment: revtex, 38 pages including 3 figure

    To quantum mechanics through random fluctuations at the Planck time scale

    Full text link
    We show that (in contrast to a rather common opinion) QM is not a complete theory. This is a statistical approximation of classical statistical mechanics on the {\it infinite dimensional phase space.} Such an approximation is based on the asymptotic expansion of classical statistical averages with respect to a small parameter α.\alpha. Therefore statistical predictions of QM are only approximative and a better precision of measurements would induce deviations of experimental averages from quantum mechanical ones. In this note we present a natural physical interpretation of α\alpha as the time scaling parameter (between quantum and prequantum times). By considering the Planck time tPt_P as the unit of the prequantum time scale we couple our prequantum model with studies on the structure of space-time on the Planck scale performed in general relativity, string theory and cosmology. In our model the Planck time tPt_P is not at all the {\it "ultimate limit to our laws of physics"} (in the sense of laws of classical physics). We study random (Gaussian) infinite-dimensional fluctuations for prequantum times stPs\leq t_P and show that quantum mechanical averages can be considered as an approximative description of such fluctuations.Comment: Discussion on the possibility to go beyond Q

    Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present a search for the production of neutral Higgs bosons decaying into tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the 95% C.L. on the product of production cross section and branching ratio for a scalar resonance decaying into tautau pairs, and we then interpret these limits as limits on the production of Higgs bosons in the minimal supersymmetric standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL

    Measurement of three-jet differential cross sections d sigma-3jet / d M-3jet in p anti-p collisions at sqrt(s)=1.96 TeV

    Full text link
    We present the first measurement of the inclusive three-jet differential cross section as a function of the invariant mass of the three jets with the largest transverse momenta in an event in p anti-p collisions at sqrt(s) = 1.96 TeV. The measurement is made in different rapidity regions and for different jet transverse momentum requirements and is based on a data set corresponding to an integrated luminosity of 0.7 fb^{-1} collected with the D0 detector at the Fermilab Tevatron Collider. The results are used to test the three-jet matrix elements in perturbative QCD calculations at next-to-leading order in the strong coupling constant. The data allow discrimination between parametrizations of the parton distribution functions of the proton.Comment: 10 pages, 4 figures, 2 tables, submitted to Phys. Lett. B, corrected chi2 values for NNPD

    Search for pair production of the scalar top quark in muon+tau final states

    Get PDF
    We present a search for the pair production of scalar top quarks (t~1\tilde{t}_{1}), the lightest supersymmetric partners of the top quarks, in ppˉp\bar{p} collisions at a center-of-mass energy of 1.96 TeV, using data corresponding to an integrated luminosity of {7.3 fb1fb^{-1}} collected with the \dzero experiment at the Fermilab Tevatron Collider. Each scalar top quark is assumed to decay into a bb quark, a charged lepton, and a scalar neutrino (ν~\tilde{\nu}). We investigate final states arising from t~1t~1ˉbbˉμτν~ν~\tilde{t}_{1} \bar{\tilde{t}_{1}} \rightarrow b\bar{b}\mu\tau \tilde{\nu} \tilde{\nu} and t~1t~1ˉbbˉττν~ν~\tilde{t}_{1} \bar{\tilde{t}_{1}} \rightarrow b\bar{b}\tau\tau \tilde{\nu} \tilde{\nu}. With no significant excess of events observed above the background expected from the standard model, we set exclusion limits on this production process in the (mt~1m_{\tilde{t}_{1}},mν~m_{\tilde{\nu}}) plane.Comment: Submitted to Phys. Lett.

    Measurements of inclusive W+jets production rates as a function of jet transverse momentum in ppbar collisions at sqrt{s}=1.96 TeV

    Full text link
    This Letter describes measurements of inclusive W (--> e nu) + n jet cross sections (n = 1-4), presented as total inclusive cross sections and differentially in the nth jet transverse momentum. The measurements are made using data corresponding to an integrated luminosity of 4.2 fb-1 collected by the D0 detector at the Fermilab Tevatron Collider, and achieve considerably smaller uncertainties on W +jets production cross sections than previous measurements. The measurements are compared to next-to-leading order perturbative QCD (pQCD) calculations in the n =1-3 jet multiplicity bins and to leading order pQCD calculations in the 4-jet bin. The measurements are generally in agreement with pQCD predictions, although certain regions of phase space are identified where the calculations could be improved
    corecore