538 research outputs found

    Optical response of a misaligned and suspended Fabry-Perot cavity

    Full text link
    The response to a probe laser beam of a suspended, misaligned and detuned optical cavity is examined. A five degree of freedom model of the fluctuations of the longitudinal and transverse mirror coordinates is presented. Classical and quantum mechanical effects of radiation pressure are studied with the help of the optical stiffness coefficients and the signals provided by an FM sideband technique and a quadrant detector, for generic values of the product ϖτ\varpi \tau of the fluctuation frequency times the cavity round trip. A simplified version is presented for the case of small misalignments. Mechanical stability, mirror position entanglement and ponderomotive squeezing are accommodated in this model. Numerical plots refer to cavities under test at the so-called Pisa LF facility.Comment: 14 pages (4 figures) submitted to Phys. Rev.

    Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium

    Get PDF
    The mirror relative motion of a suspended Fabry-Perot cavity is studied in the frequency range 3-10 Hz. The experimental measurements presented in this paper, have been performed at the Low Frequency Facility, a high finesse optical cavity 1 cm long suspended to a mechanical seismic isolation system identical to that one used in the VIRGO experiment. The measured relative displacement power spectrum is compatible with a system at thermal equilibrium within its environmental. In the frequency region above 3 Hz, where seismic noise contamination is negligible, the measurement distribution is stationary and Gaussian, as expected for a system at thermal equilibrium. Through a simple mechanical model it is shown that: applying the fluctuation dissipation theorem the measured power spectrum is reproduced below 90 Hz and noise induced by external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte

    Inertial control of the mirror suspensions of the VIRGO interferometer for gravitational wave detection

    Get PDF
    In order to achieve full detection sensitivity at low frequencies, the mirrors of interferometric gravitational wave detectors must be isolated from seismic noise. The VIRGO vibration isolator, called 'superattenuator', is fully effective at frequencies above 4 Hz. Nevertheless, the residual motion of the mirror at the mechanical resonant frequencies of the system are too large for the interferometer locking system and must be damped. A multidimensional feedback system, using inertial sensors and digital processing, has been designed for this purpose. An experimental procedure for determining the feedback control of the system has been defined. In this paper a full description of the system is given and experimental results are presented.Comment: 17 pages, 11 figures, accepted for publication on Review of Scientific Instrument

    Measurement and application of electron stripping of ultrarelativistic 208Pb81+^{208}\textrm{Pb}^{81+}

    Get PDF
    New measurements of the stripping cross-section for ultrarelativistic hydrogen-like lead ions passing through aluminium and silicon have been performed at the Advanced Wakefield experiment at CERN. Agreement with existing measurements and theory has been obtained. Improvements in terms of electron beam quality and ion beam diagnostic capability, as well as further applications of such an electron beam, are discussed

    The variable finesse locking technique

    Get PDF
    Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way

    A Cross-correlation method to search for gravitational wave bursts with AURIGA and Virgo

    Full text link
    We present a method to search for transient GWs using a network of detectors with different spectral and directional sensitivities: the interferometer Virgo and the bar detector AURIGA. The data analysis method is based on the measurements of the correlated energy in the network by means of a weighted cross-correlation. To limit the computational load, this coherent analysis step is performed around time-frequency coincident triggers selected by an excess power event trigger generator tuned at low thresholds. The final selection of GW candidates is performed by a combined cut on the correlated energy and on the significance as measured by the event trigger generator. The method has been tested on one day of data of AURIGA and Virgo during September 2005. The outcomes are compared to the results of a stand-alone time-frequency coincidence search. We discuss the advantages and the limits of this approach, in view of a possible future joint search between AURIGA and one interferometric detector.Comment: 11 pages, 6 figures, submitted to CQG special issue for Amaldi 7 Proceeding

    Origin of the X-ray disc-reflection steep radial emissivity

    Full text link
    X-ray reflection off the accretion disc surrounding a black hole, together with the associated broad iron Kα\alpha line, has been widely used to constrain the innermost accretion-flow geometry and black hole spin. Some recent measurements have revealed steep reflection emissivity profiles in a number of active galactic nuclei and X-ray binaries. We explore the physically motivated conditions that give rise to the observed steep disc-reflection emissivity profiles. We perform a set of simulations based on the configuration of a possible future high-resolution X-ray mission. Computations are carried out for typical X-ray bright Seyfert-1 galaxies. We find that steep emissivity profiles with q45q\sim 4-5 (where the emissivity is ϵ(r)rq\epsilon (r) \propto r^{-q}) are produced considering either i) a lamp-post scenario where a primary compact X-ray source is located close to the black hole, or ii) the radial dependence of the disc ionisation state. We also highlight the role of the reflection angular emissivity: the radial emissivity index qq is overestimated when the standard limb-darkening law is used to describe the data. Very steep emissivity profiles with q7q \geq 7 are naturally obtained by applying reflection models that take into account radial profile ξ(r)\xi (r) of the disc ionisation induced by a compact X-ray source located close to the central black hole.Comment: 10 pages, 17 figures, accepted to A\&

    CUBES: a UV spectrograph for the future

    Get PDF
    In spite of the advent of extremely large telescopes in the UV/optical/NIR range, the current generation of 8-10m facilities is likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000, although a lower-resolution, sky-limited mode of R ~ 7,000 is also planned. CUBES will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the Phase B dedicated to detailed design and construction. First science operations are planned for 2028. In this paper, we briefly describe the CUBES project development and goals, the main science cases, the instrument design and the project organization and management
    corecore