11 research outputs found

    Bifurcation Analysis of a Two-Compartment Hippocampal Pyramidal Cell Model

    Get PDF
    The Pinsky-Rinzel model is a non-smooth 2-compartmental CA3 pyramidal cell model that has been used widely within the field of neuroscience. Here we propose a modified (smooth) system that captures the qualitative behaviour of the original model, while allowing the use of available, numerical continuation methods to perform full-system bifurcation and fastslow analysis. We study the bifurcation structure of the full system as a function of the applied current and the maximal calcium conductance. We identify the bifurcations that shape the transitions between resting, bursting and spiking behaviours, and which lead to the disappearance of bursting when the calcium conductance is reduced. Insights gained from this analysis, are then used to firstly illustrate how the irregular spiking activity found between bursting and stable spiking states, can be influenced by phase differences in the calcium and dendritic voltage, which lead to corresponding changes in the calcium-sensitive potassium current. Furthermore, we use fast-slow analysis to investigate the mechanisms of bursting and show that bursting in the model is dependent on the intermediately slow variable, calcium, while the other slow variable, the activation gate of the afterhyperpolarisation current, does not contribute to setting the intraburst dynamics but participates in setting the interburst interval. Finally, we discuss how some of the described bifurcations affect spiking behaviour, during sharp-wave ripples, in a larger network of Pinsky-Rinzel cells.LAA is supported by the Engineering and Physical Sciences Research Council (EPSRC) and Eli Lilly & Company; LYP is supported by the Wellcome Trust; and KT-A is supported by grant EP/N014391/1 of the EPSRC

    Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits

    Get PDF
    In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory–Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage

    Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression

    Get PDF
    Animal models of psychiatric disorders are usually discussed with regard to three criteria first elaborated by Willner; face, predictive and construct validity. Here, we draw the history of these concepts and then try to redraw and refine these criteria, using the framework of the diathesis model of depression that has been proposed by several authors. We thus propose a set of five major criteria (with sub-categories for some of them); homological validity (including species validity and strain validity), pathogenic validity (including ontopathogenic validity and triggering validity), mechanistic validity, face validity (including ethological and biomarker validity) and predictive validity (including induction and remission validity). Homological validity requires that an adequate species and strain be chosen: considering species validity, primates will be considered to have a higher score than drosophila, and considering strains, a high stress reactivity in a strain scores higher than a low stress reactivity in another strain. Pathological validity corresponds to the fact that, in order to shape pathological characteristics, the organism has been manipulated both during the developmental period (for example, maternal separation: ontopathogenic validity) and during adulthood (for example, stress: triggering validity). Mechanistic validity corresponds to the fact that the cognitive (for example, cognitive bias) or biological mechanisms (such as dysfunction of the hormonal stress axis regulation) underlying the disorder are identical in both humans and animals. Face validity corresponds to the observable behavioral (ethological validity) or biological (biomarker validity) outcomes: for example anhedonic behavior (ethological validity) or elevated corticosterone (biomarker validity). Finally, predictive validity corresponds to the identity of the relationship between the triggering factor and the outcome (induction validity) and between the effects of the treatments on the two organisms (remission validity). The relevance of this framework is then discussed regarding various animal models of depression

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Oral microbiome and health

    No full text
    corecore