108 research outputs found

    The relationship between body size and mortality in the linked Scottish Health Surveys: cross-sectional surveys with follow-up

    Get PDF
    Objective: To investigate the relationship between body mass index (BMI), waist circumference (WC) or waist–hip ratio (WHR) and all-cause mortality or cause-specific mortality. Design: Cross-sectional surveys linked to hospital admissions and death records. Subjects: In total, 20 117 adults (aged 18–86 years) from a nationally representative sample of the Scottish population. Measurements: Cox proportional hazards models were used to estimate hazard ratios (HRs) for all-cause, or cause-specific, mortality. The three anthropometric measurements BMI, WC and WHR were the main variables of interest. The following were adjustment variables: age, gender, smoking status, alcohol consumption, survey year, social class and area of deprivation. Results: BMI-defined obesity (greater than or equal to30 kg m−2) was not associated with increased risk of mortality (HR=0.93; 95% confidence interval=0.80–1.08), whereas the overweight category (25–&#60;30 kg m−2) was associated with a decreased risk (0.80; 0.70–0.91). In contrast, the HR for a high WC (mengreater than or equal to102 cm, womengreater than or equal to88 cm) was 1.17 (1.02–1.34) and a high WHR (mengreater than or equal to1, women&#8805;0.85) was 1.34 (1.16–1.55). There was an increased risk of cardiovascular disease (CVD) mortality associated with BMI-defined obesity, a high WC and a high WHR categories; the HR estimates for these were 1.36 (1.05–1.77), 1.41 (1.11–1.79) and 1.44 (1.12–1.85), respectively. A low BMI (&#60;18.5 kg m−2) was associated with elevated HR for all-cause mortality (2.66; 1.97–3.60), for chronic respiratory disease mortality (3.17; 1.39–7.21) and for acute respiratory disease mortality (11.68; 5.01–27.21). This pattern was repeated for WC but not for WHR. Conclusions: It might be prudent not to use BMI as the sole measure to summarize body size. The alternatives WC and WHR may more clearly define the health risks associated with excess body fat accumulation. The lack of association between elevated BMI and mortality may reflect the secular decline in CVD mortality.</p

    Effector and Naturally Occurring Regulatory T Cells Display No Abnormalities in Activation Induced Cell Death in NOD Mice

    Get PDF
    BACKGROUND: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff) and regulatory T cells (Treg) to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS: Both effector (CD25(-), FoxP3(-)) and suppressor (CD25(+), FoxP3(+)) CD4(+) T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP trangeneess. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL) in both strains. The effector and suppressor CD4(+) subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4(+)CD25(-) T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. CONCLUSION: These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis

    Six-membered ring systems: with O and/or S atoms

    Get PDF
    A large variety of publications have emerged in 2012 involving O- and S-6- membered ring systems. The increasing number of reviews and other communica- tions dedicated to natural and synthetic derivatives and their biological significance highlights the importance of these heterocycles. Reviews on natural products involve biosynthesis and isolation of enantiomeric derivatives h12AGE4802i, biosynthesis, isolation, synthesis, and biological studies on the pederin family h12NPR980i and xanthones obtained from fungi, lichens, and bacteria h12CR3717i and on the potential chemotherapeutic value of phyto- chemical products and plant extracts as antidiabetic h12NPR580i, antimicrobial, and resistance-modifying agents h12NPR1007i. A more specific review covers a structure–activity relationship of endoperoxides from marine origin and their antitry- panosomal activity h12OBC7197i. New synthetic routes to naturally occurring, biologically active pyran derivatives have been the object of several papers. Different approaches have been discussed for the total synthesis of tetrahydropyran-containing natural products (")-zampanolide h12CEJ16868, 12EJO4130, 12OL3408i, (")-aspergillides A and B h12H(85)587, 12H(85)1255, 12TA252i, (þ)-neopeltolide h12JOC2225, 12JOC9840, 12H(85) 1255i, or their macrolactone core h12OBC3689, 12OL2346i. The total synthesis of bistramide A h12CEJ7452i and (þ)-kalihinol A h12CC901i and the stereoselec- tive synthesis of a fragment of bryostatin h12S3077, 12TL6163i have also been sur- veyed. Other papers relate the total synthesis of naturally occurring carbocyclic and heterocyclic-fused pyran compounds, such as (")-dysiherbaine h12CC6295i, penos- tatin B h12OL244i, Greek tobacco lactonic products, and analogues h12TL4293i and on the structurally intriguing limonoids andhraxylocarpins A–E h12CEJ14342i. The stereocontrolled synthesis of fused tetrahydropyrans was used in the preparation of blepharocalyxin D h12AGE3901i. Polyphenolic heterocyclic compounds have also received great attention in 2012. The biological activities and the chemistry of prenylated caged xanthones h12PCB78i, the occurrence of sesquiterpene coumarins h12PR77i, and the medicinal properties of the xanthone mangiferin h12MRME412i have been reviewed. An overview on the asymmetric syntheses of flavanones and chromanones h12EJO449i, on the synthesis and reactivity of flavones h12T8523i and xanthones h12COC2818i, on the synthesis and biosynthesis of biocoumarins h12T2553i, and on the synthesis and applications of flavylium compounds h12CSR869i has been discussed. The most recent developments in the synthesis and applications of sultones, a very important class of sulfur compounds, were reported h12CR5339i. A review on xanthene-based fluorescent probes for sensing cations, anions, bio- logical species, and enzyme activity has described the spiro-ring-opening approach with a focus on the major mechanisms controlling their luminescence behavior h12CR1910i. The design and synthesis of other derivatives to be used as sensors of gold species h12CC11229i and other specific metal cations h12PC823i have also been described. Recent advances related to coumarin-derived fluorescent chemosen- sors for metal ions h12COC2690i and to monitoring in vitro analysis and cellular imaging of monoamine oxidase activity h12CC6833i have been discussed. The study of various organic chromophores allowed the synthesis of novel dica- tionic phloroglucinol-type bisflavylium pigments h12SL2053i, and the optical and spectroscopic properties of several synthetic 6-aryldibenzo[b,d]pyrylium salts were explored h12TL6433i. Discussion of specific reactions leading to O- and S-membered heterocyclic compounds covers intramolecular radical cyclization h12S2475i and asymmetric enamine and dienamine catalysis h12EJO865i, oxa-Michael h12CSR988i and dom- ino Knoevenagel–hetero-Diels–Alder (hDA) reactions h12T5693i, and the versatility in cycloadditions as well as nucleophilic reactions using o-quinones h12CSR1050i. The use of specific reagents relevant to this chapter includes molecular iodine h12CEJ5460, 12COS561i, samarium diiodide–water for selective reductive transfor- mations h12CC330i, o-quinone methides as versatile intermediates h12CEJ9160i, InCl3 as catalyst h12T8683i, and gold and platinum p-acid mediated insertion of alkynes into carbon–heteroatom s-bonds h12S3401i. The remainder of this chapter discusses the most studied transformations on O- and S-6-membered heterocycles

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore