233 research outputs found
Phase transitions and critical behavior of black branes in canonical ensemble
We study the thermodynamics and phase structure of asymptotically flat
non-dilatonic as well as dilatonic black branes in a cavity in arbitrary
dimensions (). We consider the canonical ensemble and so the charge inside
the cavity and the temperature at the wall are fixed. We analyze the stability
of the black brane equilibrium states and derive the phase structures. For the
zero charge case we find an analog of Hawking-Page phase transition for these
black branes in arbitrary dimensions. When the charge is non-zero, we find that
below a critical value of the charge, the phase diagram has a line of
first-order phase transition in a certain range of temperatures which ends up
at a second order phase transition point (critical point) as the charge attains
the critical value. We calculate the critical exponents at that critical point.
Although our discussion is mainly concerned with the non-dilatonic branes, we
show how it easily carries over to the dilatonic branes as well.Comment: 37 pages, 6 figures, the validity of using the effective action
discussed, references adde
Phase structure of black branes in grand canonical ensemble
This is a companion paper of our previous work [1] where we studied the
thermodynamics and phase structure of asymptotically flat black -branes in a
cavity in arbitrary dimensions in a canonical ensemble. In this work we
study the thermodynamics and phase structure of the same in a grand canonical
ensemble. Since the boundary data in two cases are different (for the grand
canonical ensemble boundary potential is fixed instead of the charge as in
canonical ensemble) the stability analysis and the phase structure in the two
cases are quite different. In particular, we find that there exists an analog
of one-variable analysis as in canonical ensemble, which gives the same
stability condition as the rather complicated known (but generalized from black
holes to the present case) two-variable analysis. When certain condition for
the fixed potential is satisfied, the phase structure of charged black
-branes is in some sense similar to that of the zero charge black -branes
in canonical ensemble up to a certain temperature. The new feature in the
present case is that above this temperature, unlike the zero-charge case, the
stable brane phase no longer exists and `hot flat space' is the stable phase
here. In the grand canonical ensemble there is an analog of Hawking-Page
transition, even for the charged black -brane, as opposed to the canonical
ensemble. Our study applies to non-dilatonic as well as dilatonic black
-branes in space-time dimensions.Comment: 32 pages, 2 figures, various points refined, discussion expanded,
references updated, typos corrected, published in JHEP 1105:091,201
Human Development and Tourism Specialization. Evidence from a Panel of Developed and Developing Countries
In the present study we analyze the relationship between tourism and human development for a selection of 63 countries from 1996 to 2008. Findings confirm that, on average, tourism is positively associated with human development. By decomposing the effect of tourism on each human development indicator, we find that literacy rate appears to be the most affected. This result suggests that the impact of tourism in the host country is much broader respect to the purely economic effect. Furthermore, it suggests the need of further investigating the relationship between human development and tourism
Bt Crop Effects on Functional Guilds of Non-Target Arthropods: A Meta-Analysis
Background: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt). We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. Methodology/Principal Findings: We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control
Clinical audit of core podiatry treatment in the NHS
<p>Abstract</p> <p>Background</p> <p>Core podiatry involves treatment of the nails, corns and callus and also giving footwear and foot health advice. Though it is an integral part of current podiatric practice little evidence is available to support its efficacy in terms of research and audit data. This information is important in order to support the current NHS commissioning process where services are expected to provide data on standards including outcomes. This study aimed to increase the evidence base for this area of practice by conducting a multi-centre audit in 8 NHS podiatry departments over a 1-year period.</p> <p>Methods</p> <p>The outcome measure used in this audit was the Podiatry Health Questionnaire which is a self completed short measure of foot health including a pain visual analogue scale and a section for the podiatrist to rate an individual's foot health based on their podiatric problems. The patient questionnaire was completed by individuals prior to receiving podiatry care and then 2 weeks after treatment to assess the effect of core podiatry in terms of pain and foot health.</p> <p>Results</p> <p>1047 patients completed both questionnaires, with an age range from 26–95 years and a mean age of 72.9 years. The podiatrists clinical rating at baseline showed 75% of patients had either slight or moderate podiatric problems. The differences in questionnaire and visual analogue scores before and after treatment were determined according to three categories – <it>better, same, worse </it>and 75% of patients' scores either remained the same or improved after core podiatry treatment. A student t-test showed a statistical significant difference in pre and post treatment scores where P < 0.001, though the confidence interval indicated that the improvement was relatively small.</p> <p>Conclusion</p> <p>Core podiatry has been shown to sustain or improve foot health and pain in 75% of the patients taking part in the audit. Simple outcome measures including pain scales should be used routinely in podiatric practice to assess the affect of different aspects of treatments and improve the evidence base for podiatry.</p
Experimental signature of the attractive Coulomb force between positive and negative magnetic monopoles in spin ice
A non-Ohmic current that grows exponentially with the square root of applied electric field is well known from thermionic field emission (the Schottky effect)1, electrolytes (the second Wien effect)2 and semiconductors (the Poole–Frenkel effect)3. It is a universal signature of the attractive Coulomb force between positive and negative electrical charges, which is revealed as the charges are driven in opposite directions by the force of an applied electric field. Here we apply thermal quenches4 to spin ice5,6,7,8,9,10,11 to prepare metastable populations of bound pairs of positive and negative emergent magnetic monopoles12,13,14,15,16 at millikelvin temperatures. We find that the application of a magnetic field results in a universal exponential-root field growth of magnetic current, thus confirming the microscopic Coulomb force between the magnetic monopole quasiparticles and establishing a magnetic analogue of the Poole–Frenkel effect. At temperatures above 300 mK, gradual restoration of kinetic monopole equilibria causes the non-Ohmic current to smoothly evolve into the high-field Wien effect2 for magnetic monopoles, as confirmed by comparison to a recent and rigorous theory of the Wien effect in spin ice17,18. Our results extend the universality of the exponential-root field form into magnetism and illustrate the power of emergent particle kinetics to describe far-from-equilibrium response in complex systems
Exhaustive exercise training enhances aerobic capacity in American alligator (Alligator mississippiensis)
The oxygen transport system in mammals is extensively remodelled in response to repeated bouts of activity, but many reptiles appear to be ‘metabolically inflexible’ in response to exercise training. A recent report showed that estuarine crocodiles (Crocodylus porosus) increase their maximum metabolic rate in response to exhaustive treadmill training, and in the present study, we confirm this response in another crocodilian, American alligator (Alligator mississippiensis). We further specify the nature of the crocodilian training response by analysing effects of training on aerobic [citrate synthase (CS)] and anaerobic [lactate dehydrogenase (LDH)] enzyme activities in selected skeletal muscles, ventricular and skeletal muscle masses and haematocrit. Compared to sedentary control animals, alligators regularly trained for 15 months on a treadmill (run group) or in a flume (swim group) exhibited peak oxygen consumption rates higher by 27 and 16%, respectively. Run and swim exercise training significantly increased ventricular mass (~11%) and haematocrit (~11%), but not the mass of skeletal muscles. However, exercise training did not alter CS or LDH activities of skeletal muscles. Similar to mammals, alligators respond to exercise training by increasing convective oxygen transport mechanisms, specifically heart size (potentially greater stroke volume) and haematocrit (increased oxygen carrying-capacity of the blood). Unlike mammals, but similar to squamate reptiles, alligators do not also increase citrate synthase activity of the skeletal muscles in response to exercise
Validation of the ADAMO Care Watch for step counting in older adults
Background: Accurate measurement devices are required to objectively quantify physical activity. Wearable activity monitors, such as pedometers, may serve as affordable and feasible instruments for measuring physical activity levels in older adults during their normal activities of daily living. Currently few available accelerometer-based steps counting devices have been shown to be accurate at slow walking speeds, therefore there is still lacking appropriate devices tailored for slow speed ambulation, typical of older adults.
This study aimed to assess the validity of step counting using the pedometer function of the ADAMO Care Watch, containing an embedded algorithm for measuring physical activity in older adults.
Methods: Twenty older adults aged ≥ 65 years (mean ± SD, 75±7 years; range, 68–91) and 20 young adults (25±5 years, range 20–40), wore a care watch on each wrist and performed a number of randomly ordered tasks: walking at slow, normal and fast self-paced speeds; a Timed Up and Go test (TUG); a step test and ascending/descending stairs. The criterion measure was the actual number of steps observed, counted with a manual tally counter. Absolute percentage error scores, Intraclass Correlation Coefficients (ICC), and Bland–Altman plots were used to assess validity.
Results: ADAMO Care Watch demonstrated high validity during slow and normal speeds (range 0.5–1.5 m/s) showing an absolute error from 1.3% to 1.9% in the older adult group and from 0.7% to 2.7% in the young adult group. The percentage error for the 30-metre walking tasks increased with faster pace in both young adult (17%) and older adult groups (6%). In the TUG test, there was less error in the steps recorded for older adults (1.3% to 2.2%) than the young adults (6.6% to 7.2%). For the total sample, the ICCs for the ADAMO Care Watch for the 30-metre walking tasks at each speed and for the TUG test were ranged between 0.931 to 0.985.
Conclusion: These findings provide evidence that the ADAMO Care Watch demonstrated highly accurate measurements of the steps count in all activities, particularly walking at normal and slow speeds. Therefore, these data support the inclusion of the ADAMO Care Watch in clinical applications for measuring the number of steps taken by older adults at normal, slow walking speeds
Mouse Transgenesis Identifies Conserved Functional Enhancers and cis-Regulatory Motif in the Vertebrate LIM Homeobox Gene Lhx2 Locus
The vertebrate Lhx2 is a member of the LIM homeobox family of
transcription factors. It is essential for the normal development of the
forebrain, eye, olfactory system and liver as well for the differentiation of
lymphoid cells. However, despite the highly restricted spatio-temporal
expression pattern of Lhx2, nothing is known about its
transcriptional regulation. In mammals and chicken, Crb2,
Dennd1a and Lhx2 constitute a conserved
linkage block, while the intervening Dennd1a is lost in the
fugu Lhx2 locus. To identify functional enhancers of
Lhx2, we predicted conserved noncoding elements (CNEs) in
the human, mouse and fugu Crb2-Lhx2 loci and
assayed their function in transgenic mouse at E11.5. Four of the eight CNE
constructs tested functioned as tissue-specific enhancers in specific regions of
the central nervous system and the dorsal root ganglia (DRG), recapitulating
partial and overlapping expression patterns of Lhx2 and
Crb2 genes. There was considerable overlap in the
expression domains of the CNEs, which suggests that the CNEs are either
redundant enhancers or regulating different genes in the locus. Using a large
set of CNEs (810 CNEs) associated with transcription factor-encoding genes that
express predominantly in the central nervous system, we predicted four
over-represented 8-mer motifs that are likely to be associated with expression
in the central nervous system. Mutation of one of them in a CNE that drove
reporter expression in the neural tube and DRG abolished expression in both
domains indicating that this motif is essential for expression in these domains.
The failure of the four functional enhancers to recapitulate the complete
expression pattern of Lhx2 at E11.5 indicates that there must
be other Lhx2 enhancers that are either located outside the
region investigated or divergent in mammals and fishes. Other approaches such as
sequence comparison between multiple mammals are required to identify and
characterize such enhancers
Crenarchaeal CdvA Forms Double-Helical Filaments Containing DNA and Interacts with ESCRT-III-Like CdvB
International audienceBACKGROUND: The phylum Crenarchaeota lacks the FtsZ cell division hallmark of bacteria and employs instead Cdv proteins. While CdvB and CdvC are homologues of the eukaryotic ESCRT-III and Vps4 proteins, implicated in membrane fission processes during multivesicular body biogenesis, cytokinesis and budding of some enveloped viruses, little is known about the structure and function of CdvA. Here, we report the biochemical and biophysical characterization of the three Cdv proteins from the hyperthermophilic archaeon Metallospherae sedula. METHODOLOGY/PRINCIPAL FINDINGS: Using sucrose density gradient ultracentrifugation and negative staining electron microscopy, we evidenced for the first time that CdvA forms polymers in association with DNA, similar to known bacterial DNA partitioning proteins. We also observed that, in contrast to full-lengh CdvB that was purified as a monodisperse protein, the C-terminally deleted CdvB construct forms filamentous polymers, a phenomenon previously observed with eukaryotic ESCRT-III proteins. Based on size exclusion chromatography data combined with detection by multi-angle laser light scattering analysis, we demonstrated that CdvC assembles, in a nucleotide-independent way, as homopolymers resembling dodecamers and endowed with ATPase activity in vitro. The interactions between these putative cell division partners were further explored. Thus, besides confirming the previous observations that CdvB interacts with both CdvA and CdvC, our data demonstrate that CdvA/CdvB and CdvC/CdvB interactions are not mutually exclusive. CONCLUSIONS/SIGNIFICANCE: Our data reinforce the concept that Cdv proteins are closely related to the eukaryotic ESCRT-III counterparts and suggest that the organization of the ESCRT-III machinery at the Crenarchaeal cell division septum is organized by CdvA an ancient cytoskeleton protein that might help to coordinate genome segregation
- …