338 research outputs found

    Spindle Assembly Checkpoint Regulates Mitotic Cell Cycle Progression during Preimplantation Embryo Development

    Get PDF
    Errors in chromosome segregation or distribution may result in aneuploid embryo formation, which causes implantation failure, spontaneous abortion, genetic diseases, or embryo death. Embryonic aneuploidy occurs when chromosome aberrations are present in gametes or early embryos. To date, it is still unclear whether the spindle assembly checkpoint (SAC) is required for the regulation of mitotic cell cycle progression to ensure mitotic fidelity during preimplantation development. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of SAC components (Bub3, BubR1 and Mad2) in mouse preimplantation embryos. Our data showed that overexpressed SAC components inhibited metaphase-anaphase transition by preventing sister chromatid segregation. Deletion of SAC components by RNAi accelerated the metaphase-anaphase transition during the first cleavage and caused micronuclei formation, chromosome misalignment and aneuploidy, which caused decreased implantation and delayed development. Furthermore, in the presence of the spindle-depolymerizing drug nocodazole, SAC depleted embryos failed to arrest at metaphase. Our results suggest that SAC is essential for the regulation of mitotic cell cycle progression in cleavage stage mouse embryos

    Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV

    Get PDF
    The inclusive cross section for production of isolated photons has been measured in \pbarp collisions at s=630\sqrt{s} = 630 GeV with the \D0 detector at the Fermilab Tevatron Collider. The photons span a transverse energy (ETE_T) range from 7-49 GeV and have pseudorapidity η<2.5|\eta| < 2.5. This measurement is combined with to previous \D0 result at s=1800\sqrt{s} = 1800 GeV to form a ratio of the cross sections. Comparison of next-to-leading order QCD with the measured cross section at 630 GeV and ratio of cross sections show satisfactory agreement in most of the ETE_T range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001

    Increased Activity Imbalance in Fronto-Subcortical Circuits in Adolescents with Major Depression

    Get PDF
    BACKGROUND: A functional discrepancy exists in adolescents between frontal and subcortical regions due to differential regional maturational trajectories. It remains unknown how this functional discrepancy alters and whether the influence from the subcortical to the frontal system plays a primacy role in medication naïve adolescent with major depressive disorder (MDD). METHODOLOGY/PRINCIPAL FINDINGS: Eighteen MDD and 18 healthy adolescents were enrolled. Depression and anxiety severity was assessed by the Short Mood and Feeling Questionnaire (SMFQ) and Screen for Child Anxiety Related Emotional Disorders (SCARED) respectively. The functional discrepancy was measured by the amplitude of low-frequency fluctuations (ALFF) of resting-state functional MRI signal. Correlation analysis was carried out between ALFF values and SMFQ and SCARED scores. Resting brain activity levels measured by ALFF was higher in the frontal cortex than that in the subcortical system involving mainly (para) limbic-striatal regions in both HC and MDD adolescents. The difference of ALFF values between frontal and subcortical systems was increased in MDD adolescents as compared with the controls. CONCLUSIONS/SIGNIFICANCE: The present study identified an increased imbalance of resting-state brain activity between the frontal cognitive control system and the (para) limbic-striatal emotional processing system in MDD adolescents. The findings may provide insights into the neural correlates of adolescent MDD

    Development and psychometric testing of an instrument to compare career choice influences and perceptions of nursing among healthcare students

    Get PDF
    Background: With the availability of more healthcare courses and an increased intake of nursing students, education institutions are facing challenges to attract school leavers to enter nursing courses. The comparison of career choice influences and perception of nursing among healthcare students can provide information for recruitment strategies. An instrument to compare the influences of healthcare career choice is lacking. The purpose of this study is to develop and evaluate the psychometric properties of an instrument to compare the influences of healthcare career choice with perceptions of nursing as a career choice. Methods: The study was conducted in two phases. In phase one, two sets of scales with parallel items that measure the influences of healthcare career choice and perceptions of nursing as a career choice were developed through an earlier qualitative study, literature review, and expert validation. Phase two involved testing the construct validity, concurrent validity and reliability with a convenience sample of 283 first year healthcare students who were recruited at two education institutions in Singapore. Results: An exploratory factor analysis revealed 35-parallel items in a six-factor solution (personal interest, prior healthcare exposure, self-efficacy, perceived nature of work, job prospects, and social influences) that explained 59 and 64% of the variance for healthcare career choice and nursing as a career choice respectively. A high correlation (r = 0.76, p \u3c 0.001) was obtained with an existing tool, confirming the concurrent validity. The internal consistency was sufficient with Cronbach’s alpha of 0.93 for healthcare career choice and 0.94 for nursing as a career choice. The test-retest reliability was acceptable with an Intraclass Correlation Coefficient of 0.63 for healthcare career choice and 0.60 for nursing as a career choice. Conclusions: The instrument provides opportunities for understanding the differences between influences of healthcare career choice and perceptions of nursing as a career choice. This comparative understanding of career choice influences can guide educator and policy-makers on nursing recruitmen

    A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures

    Get PDF
    Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN and graphene to form in a stacked heterostructure in the favorable growth environment provided by a Ni(111) substrate. This involves first saturating a Ni film on MgO(111) with C, growing h-BN on the exposed metal surface, and precipitating the C back to the h-BN/Ni interface to form graphene. The resulting laterally continuous heterostructure is composed of a top layer of few-layer thick h-BN on an intermediate few-layer thick graphene, lying on top of Ni/MgO(111). Examinations by synchrotron-based grazing incidence diffraction, X-ray photoemission spectroscopy, and UV-Raman spectroscopy reveal that while the h-BN is relaxed, the lattice constant of graphene is significantly reduced, likely due to nitrogen doping. These results illustrate a different pathway for the production of h-BN/graphene heterostructures, and open a new perspective for the large-area preparation of heterosystems combining graphene and other 2D or 3D materials

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    B-type natriuretic peptide-induced delayed modulation of TRPV1 and P2X3 receptors of mouse trigeminal sensory neurons

    Get PDF
    Important pain transducers of noxious stimuli are small- and medium-diameter sensory neurons that express transient receptor vanilloid-1 (TRPV1) channels and/or adenosine triphosphate (ATP)-gated P2X3 receptors whose activity is upregulated by endogenous neuropeptides in acute and chronic pain models. Little is known about the role of endogenous modulators in restraining the expression and function of TRPV1 and P2X3 receptors. In dorsal root ganglia, evidence supports the involvement of the natriuretic peptide system in the modulation of nociceptive transmission especially via the B-type natriuretic peptide (BNP) that activates the natriuretic peptide receptor-A (NPR-A) to downregulate sensory neuron excitability. Since the role of BNP in trigeminal ganglia (TG) is unclear, we investigated the expression of BNP in mouse TG in situ or in primary cultures and its effect on P2X3 and TRPV1 receptors of patch-clamped cultured neurons. Against scant expression of BNP, almost all neurons expressed NPRA at membrane level. While BNP rapidly increased cGMP production and Akt kinase phosphorylation, there was no early change in passive neuronal properties or responses to capsaicin, \u3b1,\u3b2-meATP or GABA. Nonetheless, 24 h application of BNP depressed TRPV1 mediated currents (an effect blocked by the NPR-A antagonist anantin) without changing responses to \u3b1,\u3b2-meATP or GABA. Anantin alone decreased basal cGMP production and enhanced control \u3b1,\u3b2-meATP-evoked responses, implying constitutive regulation of P2X3 receptors by ambient BNP. These data suggest a slow modulatory action by BNP on TRPV1 and P2X3 receptors outlining the role of this peptide as a negative regulator of trigeminal sensory neuron excitability to nociceptive stimuli. \ua9 2013 Vilotti et al

    Genome-wide structural variant analysis identifies risk loci for non-Alzheimer's dementias

    Get PDF
    We characterized the role of structural variants, a largely unexplored type of genetic variation, in two non-Alzheimer's dementias, namely Lewy body dementia (LBD) and frontotemporal dementia (FTD)/amyotrophic lateral sclerosis (ALS). To do this, we applied an advanced structural variant calling pipeline (GATK-SV) to short-read whole-genome sequence data from 5,213 European-ancestry cases and 4,132 controls. We discovered, replicated, and validated a deletion in TPCN1 as a novel risk locus for LBD and detected the known structural variants at the C9orf72 and MAPT loci as associated with FTD/ALS. We also identified rare pathogenic structural variants in both LBD and FTD/ALS. Finally, we assembled a catalog of structural variants that can be mined for new insights into the pathogenesis of these understudied forms of dementia

    Differential cross section for W boson production as a function of transverse momentum in proton-antiproton collisions at 1.8 TeV

    Get PDF
    We report a measurement of the differential cross section for W boson production as a function of its transverse momentum in proton-antiproton collisions at sqrt{s} = 1.8 TeV. The data were collected by the D0 experiment at the Fermilab Tevatron Collider during 1994-1995 and correspond to an integrated luminosity of 85 pb^{-1}. The results are in good agreement with quantum chromodynamics over the entire range of transverse momentum.Comment: Accepted by Physics Letters

    Measurement of the ratio of differential cross sections for W and Z boson production as a function of transverse momentum in pbar p collisions at sqrt(s)=1.8 TeV

    Get PDF
    We report on a measurement of the ratio of the differential cross sections for W and Z boson production as a function of transverse momentum in proton-antiproton collisions at sqrt(s) = 1.8 TeV. This measurement uses data recorded by the D0 detector at the Fermilab Tevatron in 1994-1995. It represents the first investigation of a proposal that ratios between W and Z observables can be calculated reliably using perturbative QCD, even when the individual observables are not. Using the ratio of differential cross sections reduces both experimental and theoretical uncertainties, and can therefore provide smaller overall uncertainties in the measured mass and width of the W boson than current methods used at hadron colliders.Comment: 10 pages, 2 figures, to be published in Physics Letters
    corecore