-

View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Radboud Repository

Radboud Repository Radboud University Nijmegen ;@r

N\

PDF hosted at the Radboud Repository of the Radboud University
Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/100849

Please be advised that this information was generated on 2018-07-08 and may be subject to
change.


https://core.ac.uk/display/16185299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/100849

arXiv:hep-ex/0010026v2 22 Mar 2001

Differential Cross Section for W Boson
Production as a Function of Transverse
Momentum in pp Collisions at /s = 1.8 TeV

V.M. Abazov,?® B. Abbott,”® A. Abdesselam,'* M. Abolins,>® V. Abramov,?0 B.S. Acharya,!”
D.L. Adams,%° M. Adams,?® S.N. Ahmed,?! G.D. Alexeev,?® G.A. Alves,? N. Amos,*

E.W. Anderson,* M.M. Baarmand,®® V.V. Babintsev,?6 L. Babukhadia,?® T.C. Bacon,?®

A. Baden,*” B. Baldin,?” P.W. Balm,?° S. Banerjee,!” E. Barberis,® P. Baringer,**

J. Barreto,? J.F. Bartlett,?” U. Bassler,!?> D. Bauer,?® A. Bean,** M. Begel,®* A. Belyaev,?®
S.B. Beri,'® G. Bernardi,'? I. Bertram,?” A. Besson,” R. Beuselinck,?® V.A. Bezzubov,?6

P.C. Bhat,3” V. Bhatnagar,'! M. Bhattacharjee,® G. Blazey,® S. Blessing,® A. Boehnlein,?”
N.I. Bojko,?® F. Borcherding,?” K. Bos,?® A. Brandt,® R. Breedon,' G. Briskin,?

R. Brock,”! G. Brooijmans,?” A. Bross,>” D. Buchholz,*® M. Buehler,3® V. Buescher,'*

V.S. Burtovoi,?® J.M. Butler,*® F. Canelli,’* W. Carvalho,® D. Casey,®' Z. Casilum,>

H. Castilla-Valdez,' D. Chakraborty,”® K.M. Chan,* S.V. Chekulaev,?6 D.K. Cho,>* S. Choi,**
S. Chopra,®® J.H. Christenson,3” M. Chung,?® D. Claes,”> A.R. Clark,?® J. Cochran,3*

L. Coney,*? B. Connolly,?® W.E. Cooper,*” D. Coppage,** M.A.C. Cummings,3 D. Cutts,?
G.A. Davis,>* K. Davis,? K. De,% S.J. de Jong,?' K. Del Signore,”® M. Demarteau,>”

R. Demina,* P. Demine,” D. Denisov,>” S.P. Denisov,?® S. Desai,’® H.T. Diehl,?7

M. Diesburg,?” G. Di Loreto,”' S. Doulas,* P. Draper,% Y. Ducros,"? L.V. Dudko,?

S. Duensing,?! L. Duflot,'* S.R. Dugad,'” A. Dyshkant,?6 D. Edmunds,®" J. Ellison,3*

V.D. Elvira,3” R. Engelmann,® S. Eno,*” G. Eppley,%? P. Ermolov,?® O.V. Eroshin,?®

J. Estrada,” H. Evans,®® V.N. Evdokimov,?® T. Fahland,?® S. Feher,®” D. Fein,?”

T. Ferbel,®* F. Filthaut,?' H.E. Fisk,3” Y. Fisyak,’® E. Flattum,?” F. Fleuret,>°

M. Fortner,?® K.C. Frame,”! S. Fuess,” E. Gallas,>” A.N. Galyaev,?® M. Gao,>3

V. Gavrilov,?* R.J. Genik II,%" K. Genser,>” C.E. Gerber,®® Y. Gershtein,’ R. Gilmartin,3?
G. Ginther,”* B. Gémez,> G. Gémez,*” P.I. Goncharov,?® J.L. Gonzalez Solis,'® H. Gordon,>®
L.T. Goss,®! K. Gounder,3” A. Goussiou,”® N. Graf,’® G. Graham,*” P.D. Grannis,”

J.A. Green,®® H. Greenlee,?” S. Grinstein,! L. Groer,”® S. Griinendahl,3” A. Gupta,'”

S.N. Gurzhiev,?6 G. Gutierrez,?” P. Gutierrez,® N.J. Hadley,*” H. Haggerty,3” S. Hagopian,3®
V. Hagopian,?® R.E. Hall,3? P. Hanlet,*® S. Hansen,3” J.M. Hauptman,*3 C. Hays,?3

C. Hebert,* D. Hedin,>® A.P. Heinson,?* U. Heintz,*® T. Heuring,® M.D. Hildreth,*?

Preprint submitted to Elsevier Preprint 7 February 2008


http://arXiv.org/abs/hep-ex/0010026v2

R. Hirosky,%® J.D. Hobbs,?® B. Hoeneisen,® Y. Huang,’® R. Illingworth,?® A.S. Ito,*"

M. Jaffré,"t S. Jain,'” R. Jesik,** K. Johns,?? M. Johnson,3” A. Jonckheere,3”

M. Jones,?6 H. Jostlein,3” A. Juste,?” S. Kahn,?® E. Kajfasz,'® A.M. Kalinin,??

D. Karmanov,?® D. Karmgard,*?> R. Kehoe,®® A. Kharchilava,*? S.K. Kim,'® B. Klima,3"

B. Knuteson,?® W. Ko,3' J.M. Kohli,"” A.V. Kostritskiy,26 J. Kotcher,’® A.V. Kotwal,?

A.V. Kozelov,?6 E.A. Kozlovsky,?® J. Krane,*® M.R. Krishnaswamy,'” P. Krivkova,®

S. Krzywdzinski,3” M. Kubantsev,*® S. Kuleshov,?* Y. Kulik,?® S. Kunori,*” A. Kupco,”

V.E. Kuznetsov,>* G. Landsberg,” A. Leflat,?® C. Leggett,?® F. Lehner,?” J. 1Li,% Q.Z. 11,37
J.G.R. Lima,® D. Lincoln,*” S.L. Linn,* J. Linnemann,”’ R. Lipton,3” A. Lucotte,’

L. Lueking,?” C. Lundstedt,®? C. Luo, A.K.A. Maciel,*® R.J. Madaras,>® V.L. Malyshev,23
V. Manankov,?®> H.S. Mao,* T. Marshall, M.I. Martin,3” R.D. Martin,?® K.M. Mauritz,*3

B. May,*® A.A. Mayorov,*! R. McCarthy,®® J. McDonald,3® T. McMahon,?” H.L. Melanson,?’
M. Merkin,?® K.W. Merritt,3” C. Miao,%® H. Miettinen,%2 D. Mihalcea,’® C.S. Mishra,?”

N. Mokhov,?” N.K. Mondal,'” H.E. Montgomery,3” R.W. Moore,®> M. Mostafa,! H. da Motta,>
E. Nagy,'® F. Nang,?” M. Narain,*® V.S. Narasimham,'” H.A. Neal,®® J.P. Negret,’

S. Negroni,'® T. Nunnemann,?” D. O’Neil,>! V. Oguri,® B. Olivier,'? N. Oshima,?"

P. Padley,%? L.J. Pan,’ K. Papageorgiou,?® A. Para,>” N. Parashar,*® R. Partridge,*®

N. Parua,®® M. Paterno,’* A. Patwa,?® B. Pawlik,?? J. Perkins,60 M. Peters,36

O. Peters,? P. Pétroff,'' R. Piegaia,' H. Piekarz,?® B.G. Pope,’! E. Popkov,*?

H.B. Prosper,® S. Protopopescu,”® J. Qian,’® R. Raja,?” S. Rajagopalan,’® E. Ramberg,3”
P.A. Rapidis,>” N.W. Reay,*® S. Reucroft,* J. Rha,3* M. Ridel,"* M. Rijssenbeek,?

T. Rockwell,> M. Roco,?” P. Rubinov,>” R. Ruchti,*? J. Rutherfoord,?® B.M. Sabirov,?3

A. Santoro,? L. Sawyer,*6 R.D. Schamberger,® H. Schellman,® A. Schwartzman,' N. Sen,5?
E. Shabalina,?® R.K. Shivpuri,'® D. Shpakov,*® M. Shupe,?® R.A. Sidwell,*> V. Simak,”

H. Singh,3* J.B. Singh,'® V. Sirotenko,3” P. Slattery,®® E. Smith,’® R.P. Smith,3”

R. Snihur,*® G.R. Snow,?? J. Snow,”” S. Snyder,% J. Solomon,?® V. Sorin,*

M. Sosebee, N. Sotnikova,?® K. Soustruznik,® M. Souza,? N.R. Stanton,*® G. Steinbriick,?
R.W. Stephens, F. Stichelbaut,’® D. Stoker,3? V. Stolin,?* D.A. Stoyanova,?® M. Strauss,?®
M. Strovink,? L. Stutte,3” A. Sznajder,> W. Taylor,® S. Tentindo-Repond,3® S.M. Tripathi,3!
T.G. Trippe,?® A.S. Turcot,”® P.M. Tuts,?® P. van Gemmeren,3” V. Vaniev,?6 R. Van Kooten,*!
N. Varelas,?® L.S. Vertogradov,?® A.A. Volkov,?® A.P. Vorobiev,?6 H.D. Wahl,?> H. Wang,1°
Z.-M. Wang,% J. Warchol,*? G. Watts,5* M. Wayne,*? H. Weerts,?" A. White,% J.T. White,0!
D. Whiteson,? J.A. Wightman,*® D.A. Wijngaarden,?! S. Willis,?* S.J. Wimpenny,3

J. Womersley,®” D.R. Wood,* R. Yamada,?” P. Yamin,?® T. Yasuda,?” Y.A. Yatsunenko,?

K. Yip,*® S. Youssef,?® J. Yu,3" Z. Yu,?® M. Zanabria,® H. Zheng,*? Z. Zhou,*3



M. Zielinski,®® D. Zieminska,*' A. Zieminski,*! V. Zutshi,’* E.G. Zverev,?> and A. Zylberstejn'3

(DO Collaboration)

L Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Institute of High Energy Physics, Beijing, People’s Republic of China
5 Universidad de los Andes, Bogotd, Colombia
6 Charles University, Center for Particle Physics, Prague, Czech Republic

" Institute of Physics, Academy of Sciences, Center for Particle Physics, Prague,
Czech Republic

8 Universidad San Francisco de Quito, Quito, Ecuador

IInstitut des Sciences Nucléaires, IN2P3-CNRS, Universite de Grenoble 1,
Grenoble, France

W oPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
W Laboratoire de I’Accélérateur Linéaire, IN2P3-CNRS, Orsay, France
2L.PNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France
13DAPNIA /Service de Physique des Particules, CEA, Saclay, France

Y Unguersitit Mainz, Institut fiir Physik, Mainz, Germany
15 Panjab University, Chandigarh, India
16 Delhi University, Delhi, India
17 Tata Institute of Fundamental Research, Mumbai, India
18 Seoul National University, Seoul, Korea
YOINVESTAV, Mexico City, Mexico

2 FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam,
The Netherlands

2 University of Nijmegen/NIKHEF, Nijmegen, The Netherlands
22 Institute of Nuclear Physics, Krakow, Poland
2 Joint Institute for Nuclear Research, Dubna, Russia
2 Institute for Theoretical and Experimental Physics, Moscow, Russia
25 Moscow State University, Moscow, Russia
26 Institute for High Energy Physics, Protvino, Russia
2T Lancaster University, Lancaster, United Kingdom
28 Imperial College, London, United Kingdom

29 University of Arizona, Tucson, Arizona 85721



30 Lawrence Berkeley National Laboratory and University of California, Berkeley,
California 94720

3L University of California, Davis, California 95616
32 California State University, Fresno, California 93740
33 University of California, Irvine, California 92697
34 University of California, Riverside, California 92521
35 Florida State University, Tallahassee, Florida 32306
36 University of Hawaii, Honolulu, Hawaii 96822
37 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
38 University of Illinois at Chicago, Chicago, Illinois 60607
39 Northern Illinois University, DeKalb, Illinois 60115
40 Northwestern University, Evanston, Illinois 60208
4 Indiana University, Bloomington, Indiana 47405
42 University of Notre Dame, Notre Dame, Indiana 46556
43 Jowa State University, Ames, Towa 50011
WU University of Kansas, Lawrence, Kansas 66045
4 Kansas State University, Manhattan, Kansas 66506
46 Louisiana Tech University, Ruston, Louisiana 71272
A7 University of Maryland, College Park, Maryland 20742
48 Boston University, Boston, Massachusetts 02215
49 Northeastern University, Boston, Massachusetts 02115
50 University of Michigan, Ann Arbor, Michigan 48109
5L Michigan State University, East Lansing, Michigan 4882/
52 University of Nebraska, Lincoln, Nebraska 68588
53 Columbia University, New York, New York 10027
5 University of Rochester, Rochester, New York 14627
% State University of New York, Stony Brook, New York 11794
56 Brookhaven National Laboratory, Upton, New York 11973
57 Langston University, Langston, Oklahoma 73050
%8 University of Oklahoma, Norman, Oklahoma 73019
% Brown University, Providence, Rhode Island 02912
60 University of Texas, Arlington, Texas 76019
61 Tezas AEIM University, College Station, Texas 77843
62 Rice University, Houston, Texas 77005
63 University of Virginia, Charlottesville, Virginia 22901
64 University of Washington, Seattle, Washington 98195



Abstract

We report a measurement of the differential cross section for W boson produc-
tion as a function of its transverse momentum in proton-antiproton collisions at
Vs = 1.8 TeV. The data were collected by the D@ experiment at the Fermilab
Tevatron Collider during 1994-1995 and correspond to an integrated luminosity of
85 pb~!. The results are in good agreement with quantum chromodynamics over
the entire range of transverse momentum.

Key words: PACS numbers 12.35.Qk,14.70.Fm,12.38.Qk

Measurement of the differential cross section for W boson production provides
an important test of our understanding of quantum chromodynamics (QCD).
Its implications range from impact on the precision determination of the W
boson mass to background estimates for new physics phenomena. Data from
the production of W and Z bosons at hadron colliders also provide bounds
on parametrizations used to describe the nonperturbative regime of QCD pro-
cesses.

The production of W bosons at the Fermilab Tevatron proton-antiproton col-
lider proceeds predominantly via quark-antiquark annihilation. In the QCD
description of the production mechanism, the W boson acquires transverse
momentum by recoiling against additional gluons or quarks, which at first
order originate from the processes ¢’ — Wg¢g and qg — W¢q'. When the trans-
verse momentum (p¥) and the invariant mass (Mjyy) of the W boson are of
the same order, the production rate can be calculated perturbatively order by
order in the strong coupling constant a, [1]. For p¥' < My, the calculation
is dominated by large logarithms ~ a, In(Myy /pl¥)?, which are related to the
presence of soft and collinear gluon radiation. Therefore, at sufficiently small
pV | fixed-order perturbation theory breaks down and the logarithms must be
resummed [2]. The resummation can be carried out in transverse momentum
(pr) space [3] or in impact parameter (b) space [4] via a Fourier transform.
Differences between the two formalisms are discussed in Ref. [5].

Although resummation extends the perturbative calculation to lower values of
Py, a more fundamental barrier is encountered when pj}' approaches Aqcp, the
scale characterizing QCD processes. The strong coupling constant o, becomes
large and the perturbative calculation is no longer reliable. The problem is
circumvented by using a cutoff value and by introducing an additional function
that parametrizes the nonperturbative effects [6,7]. The specific form of this
function and the particular choices for the nonperturbative parameters have
to be adjusted to give the best possible description of the data.



We report a new measurement [8] of the inclusive differential cross section
for W boson production in the electron channel as a function of transverse
momentum. We use 85 pb~! of data recorded with the D@ detector during
the 1994-1995 run of the Fermilab Tevatron pp collider. We have a ten-fold
increase in the number of W boson candidates with respect to our previous
measurement [9], reflecting the larger data set and an increase in electron
rapidity coverage. An improved electron identification technique reduces the
background for central rapidities and high p¥ by a factor of five compared
to Ref. [9], and keeps the background contamination at a low level for large
rapidities. Furthermore, corrections for detector resolution now enable direct
comparison with theory.

Electrons are detected in an electromagnetic (EM) calorimeter which has a

fractional energy resolution of ~ 15%/,/F(GeV) and a segmentation of An x
A¢ = 0.1 x 0.1 in pseudorapidity (1) and azimuth (¢). The DO detector
and the methods used to select W — ev events are discussed in detail in
Refs. [10] and [11] respectively. Below, we briefly describe the main selection
requirements.

Electron candidates are identified as isolated clusters of energy in the EM
calorimeter that have a matching track in one of the drift chambers. In event
reconstruction, electron identification is based on a likelihood technique [12].
The electron likelihood is constructed from: (i) a x? based on a covariance
matrix that determines the consistency of the cluster in the calorimeter with
the expected shape of an electron shower, (ii) the “electromagnetic energy
fraction,” defined as the ratio of the portion of the energy of the cluster found
in the EM calorimeter to its total energy, (ii7) a measure of the consistency
between the track position and the centroid of the cluster, and (iv) the ioniza-
tion energy loss along the track. To a good approximation, these four variables
are independent of each other. Electron candidates are accepted either in the
central region, 14| < 1.1, or in the forward region, 1.5 < |1get| < 2.5, where
Naet Tefers to the value of 1 obtained by assuming that the particle originates
from the geometrical center of the D@ detector.

Neutrinos do not interact in the detector and thereby create an apparent
momentum imbalance. For each event, the missing transverse energy (F;),
obtained from the vectorial sum of the transverse energy of all calorimeter
cells, is attributed to the neutrino.

Candidates for the W — ev event sample are required to have an electron
with Er > 25 GeV and F, > 25 GeV. Additionally, events containing a
second electron are rejected if the dielectron invariant mass M,. is close to

that of the Z boson (75 GeV/c? < M. < 105 GeV/c?). A total of 50,486
events passes this selection.



A major source of background stems from jets and direct photons passing our
electron selection criteria. A multijet event can be misinterpreted as a W — ev
decay if one of the jets mimics an electron and there is sufficient mismeasure-
ment of energy to produce significant f.. The fraction of background events
due to multijet, b quark, and direct-photon sources, also referred to as QCD
background, is calculated by studying the electron likelihood in both a back-
ground sample and a signal sample, as described in Ref. [13]. The total QCD
background in the data sample is 2%; its shape is determined by repeating
the background calculation for each p¥¥ bin.

Other sources of background in the W — ev sample are W — 71, Z — ee,
and tt events. The process W — 7v — evvr is indistinguishable from the
signal on an event-by-event basis. To estimate this background, W — 7v
events are generated with the same W boson production and decay model
used in the calculation of the acceptance (see below), and the 7 leptons are
forced to decay to electrons. Since the three-body decay of the 7 leads to
a very soft electron pp spectrum compared to that from W — er events,
the kinematic requirements keep this background to a moderate 2%. This is
accounted for by making a correction to the acceptance for W bosons [13].
A Z — ee event can be misidentified when one of the two electrons escapes
detection or is poorly reconstructed in the detector and thereby simulates
the presence of a neutrino. This background (0.5%) is estimated by applying
the selection criteria to a sample of Monte Carlo Z — ee events that were
generated with ISAJET [14], processed through a GEANT-based [15] simulation
of the DO detector, and overlaid with events from random pp crossings that
follow the luminosity profile of the data. The background from top quarks
decaying to W bosons (0.1%) is estimated using HERWIG [16] Monte Carlo ¢t
events and GEANT detector simulation.

Trigger and selection efficiencies are determined using Z — ee data in which
one of the electrons satisfies the trigger and selection criteria, and the second
electron provides an unbiased sample to measure the efficiencies. Due to the
limited statistics of the Z — ee data sample, we determine the shape of
the efficiency as a function of transverse momentum using Z — ee events
generated with HERWIG, processed with a GEANT detector simulation, and
overlaid with randomly selected minimum-bias pp collisions. This procedure
models the effects of the underlying event and of jet activity on the selection
of electrons. The efficiency for both the electron identification and the trigger
requirements is (55.3 £ 2.2)%.

The data are corrected for kinematic and geometric acceptance and detector
resolution, as determined from a Monte Carlo program originally developed
for measuring the mass of the W boson [17]. The method is described in detail
in Ref. [18]. The program first generates W bosons with n and p}¥’ values cho-
sen randomly from a double differential cross section d?c/dp'¥ dn provided as



input. The response of the detector and the effects of geometric and kinematic
selection criteria are introduced at the next stage. For the present analysis, the
input d?c /dp} dn distribution is obtained using the iterative unfolding method
described in Ref. [19]. The uncertainty due to this input distribution is eval-
uated by using an initial distribution uniform in p}¥ and 7. The systematic
smearing uncertainty is determined by varying the detector resolution param-
eters by +1 standard deviation from the nominal values. The total correction

for kinematic and geometric acceptance and detector resolution for W — ev
events is (47.6 £ 0.3)%.

The results for do(W — ev)/dp}, corrected for detector acceptance and reso-
lution, are shown in Table 1 and plotted in Fig. 1, where the data are compared
to the combined QCD perturbative and resummed calculation in b-space, com-
puted with published values of the nonperturbative parameters [6]. The error
bars on the data points correspond to their statistical uncertainties. The frac-
tional systematic uncertainty is shown as a band in the lower portion of the
plot. The largest contributions to the systematic error are from uncertainties
in the hadronic energy scale and resolution, the selection efficiency, and the
background (in the high p¥ region). An additional normalization uncertainty
of £4.4% from the integrated luminosity is not included in any of the plots
nor in the table. The data are normalized to the measured W — ev cross
section (2310 pb [13]). The points are plotted at the values of p}¥ where the
predicted function equals its mean over the bin [20].

Figure 2 shows a comparison of the differential cross section for W boson
production, assuming B(W — ev) = 0.111, to the fixed-order perturbative
calculation and to three different resummation calculations in the low plV
region. The parametrizations of the nonperturbative region are from Arnold-
Kauffman [5] and Ladinsky-Yuan [6] in b-space, and Ellis-Veseli [7] in pr-space.
The disagreement between the data and the fixed-order prediction at low val-
ues of p¥ confirms the presence of contributions from soft gluon emission,
which are accounted for in the resummation formalisms. The fractional differ-
ences (Data — Theory)/Theory are also shown in Fig. 2 for each of the three
resummation predictions. Although the x? for the Ellis-Veseli and Arnold-
Kauffman prescriptions are not as good as for Ladinsky-Yuan, the flexibility
in parameter space and in the form of the nonperturbative function in all three
resummed models is such that a good description of our measurement can be
achieved [18,21].

Figure 3 shows the differential cross section for W boson production in the
intermediate and high p¥' regions. The calculation by Ladinsky-Yuan [6] spec-
ifies a matching prescription which provides a smooth transition between the
resummed and the fixed-order perturbative results to O(a?). The pr-space
result by Ellis-Veseli [7] contains only the O(a) finite part and an O(a?) Su-
dakov form factor. Hence, there is still a residual unmatched higher-order effect



present in do /dp}Y in the large p}¥ region, where the cancellation of the differ-
ent parts is quite delicate. The b-space prediction by Arnold-Kauffman [5] uses
the matched result below p¥ = 50 GeV/c and the pure conventional pertur-
bative O(a?) result above. We observe good agreement with the theoretical

predictions for intermediate and high values of p}¥', which probes effects of
fixed-order QCD.

In summary, we have used data taken with the D@ detector in pp collisions at
Vs = 1.8 TeV to measure the cross section for W — ev events as a function
of p!. The combined QCD perturbative and resummed predictions are in
agreement with the fully corrected pr spectrum of W boson production in the
kinematic range of the measurement.
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Table 1

Summary of the measurement of the pp distribution of the W boson. The nominal
pQW is where the predicted function equals its mean value over the bin. The quantity
do(W — ev)/dp'¥ corresponds to the differential cross section in each bin of pl¥
for W — ev production. Systematic uncertainties do not include an overall 4.4%
normalization uncertainty in integrated luminosity.

Statistical ~ Systematic

w W bin do(W—ev)
brbr dpy

uncertainty — uncertainty

GeV/e  GeV/c  pb/(GeV/c) pb/(GeV/c) pb/(GeV/c)

0.92 0-2 109.37 £ 4.60 + 10.64
3.40 24 20591 + 6.84 + 22.80
4.97 4-6 171.28 £ 5.64 + 9.16
6.98 6-8 133.62 £ 4.65 + 9.81
8.98 8-10 103.30 £ 4.03 + 717
10.98  10-12 77.58 + 3.47 + 7.15
12.98 12-14 63.66 =+ 3.21 + 418
14.98 14-16 47.88 £ 2.77 + 4.03
16.98  16-18 37.72 + 2.43 + 2.50
18.98  18-20 30.65 £ 2.21 + 1.60
22.40  20-25 22.02 £ 1.23 + 1.11
27.41  25-30 13.94 + 0.93 =+ 0.98
32.42  30-35 9.47 £ 0.73 + 0.79
37.42 3540 6.84 + 0.63 + 0.52
44.70  40-50 3.95 + 0.36 + 0.31
54.72  50-60 1.81 + 0.24 + 0.23
64.77  60-70 1.15 £ 0.21 + 0.25
74.79  70-80 0.75 + 0.18 + 0.21
89.21  80-100 0.313 + 0.059 = 0.091
109.27  100-120 0.084 £ 0.029 += 0.018
137.40 120-160 0.044 + 0.012 + 0.014
177.64 160-200 0.0077 £ 0.0064 £ 0.0045
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Fig. 1. Differential cross section for W — er production. The solid line is the
theoretical prediction of Ref. [6]. Data points show only statistical uncertainties.
The fractional systematic uncertainty, shown as the band in the lower plot, does
not include an overall 4.4% normalization uncertainty in integrated luminosity.
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Fig. 2. Differential cross section for W boson production compared to three resum-
mation calculations and to the fixed-order calculation. Uncertainties on data include
both statistical and systematical contributions (other than an overall normaliza-
tion uncertainty in integrated luminosity). Also shown are the fractional differences
(Data—Theory)/Theory between data and the resummed predictions.
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Fig. 3. Differential cross section for W boson production in the intermediate and
high p:,W regions. Uncertainties on data include both statistical and systematical
contributions (other than an overall normalization uncertainty in integrated lumi-
nosity).
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