2,158 research outputs found
The ecology of methane in streams and rivers: patterns, controls, and global significance
Streams and rivers can substantially modify organic carbon (OC) inputs from terrestrial landscapes, and much of this processing is the result of microbial respiration. While carbon dioxide (CO₂) is the major end‐product of ecosystem respiration, methane (CH₄) is also present in many fluvial environments even though methanogenesis typically requires anoxic conditions that may be scarce in these systems. Given recent recognition of the pervasiveness of this greenhouse gas in streams and rivers, we synthesized existing research and data to identify patterns and drivers of CH₄, knowledge gaps, and research opportunities. This included examining the history of lotic CH4 research, creating a database of concentrations and fluxes (MethDB) to generate a global‐scale estimate of fluvial CH₄ efflux, and developing a conceptual framework and using this framework to consider how human activities may modify fluvial CH₄ dynamics. Current understanding of CH₄ in streams and rivers has been strongly influenced by goals of understanding OC processing and quantifying the contribution of CH₄ to ecosystem C fluxes. Less effort has been directed towards investigating processes that dictate in situ CH₄ production and loss. CH₄ makes a meager contribution to watershed or landscape C budgets, but streams and rivers are often significant CH₄ sources to the atmosphere across these same spatial extents. Most fluvial systems are supersaturated with CH₄ and we estimate an annual global emission of 26.8 Tg CH₄, equivalent to ~15‐40% of wetland and lake effluxes, respectively. Less clear is the role of CH₄ oxidation, methanogenesis, and total anaerobic respiration to whole ecosystem production and respiration. Controls on CH₄ generation and persistence can be viewed in terms of proximate controls that influence methanogenesis (organic matter, temperature, alternative electron acceptors, nutrients) and distal geomorphic and hydrologic drivers. Multiple controls combined with its extreme redox status and low solubility result in high spatial and temporal variance of CH₄ in fluvial environments, which presents a substantial challenge for understanding its larger‐scale dynamics. Further understanding of CH₄ production and consumption, anaerobic metabolism, and ecosystem energetics in streams and rivers can be achieved through more directed studies and comparison with knowledge from terrestrial, wetland, and aquatic disciplines."Support for this paper was provided by funding from the North Temperate Lakes LTER program, NSF DEB‐0822700."https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/15-102
The X-ray Luminosity Function of Nearby Rich and Poor Clusters of Galaxies: A Cosmological Probe
In this letter, we present a new determination of the local (z<0.09) X-ray
luminosity function (XLF) using a large, statistical sample of 294 Abell
clusters and the ROSAT All-Sky-Survey. Given our large sample size, we have
reduced errors by a factor of two for L(X)(0.5-2keV)>10^43 ergs/sec. We combine
our data with previous work in order to explore possible constraints imposed by
the shape of the XLF on cosmological models. A set of currently viable
cosmologies is used to construct theoretical XLFs assuming Lx is proportional
to M^p and a sigma_8-Omega_0 constraint (from Viana & Liddle 1996) based on the
local X-ray temperature function. We fit these models to our observed XLF and
verify that the simplest adiabatic, analytic scaling relation (e.g. Kaiser
1986) disagrees strongly with observations. If we assume that clusters can be
described by the pre-heated, constant core-entropy models of Evrard & Henry
(1991) then the observed XLF is consistent only with 0.1 < Omega_0 < 0.4 if the
energy per unit mass in galaxies is roughly equal to the gas energy (ie if
beta=1). (abridged)Comment: 4 pages, 2 figures, accepted for publication in ApJ Letters. uses
emulateapj.st
Confronting Environmental Inequality: Assessing and Mitigating Students\u27 Exposure to Near Roadway Air Pollution in Silicon Valley
Near roadway vehicle emissions, such as particulate matter (PM), nitrous oxides, and other contaminants, are major sources of air pollution, which can cause respiratory and cardiovascular illnesses.1 Chronic air and noise pollution exposures can also negatively influence cognitive function and student learning. Of greatest concern are concentrations within 500 feet of high traffic street edges, but concentrations can be harmful at distances up to 1320 ft.2 Vulnerable populations such as children, the elderly, or those with impaired health are likely to suffer the greatest impacts. In 2003, the California legislature passed SB 352, prohibiting building new schools within 500 ft of high traffic roadways. However, SB 352 does not address what action should be taken to reduce the health risks for children at school sites already near high traffic roadways, and the Bill acknowledges that a disproportionate amount of low income students attend such schools. A recent report found that nationwide more than 8000 public schools or about one in every 11 public schools, serving roughly 4.4 million students is located within 500 ft. of a road with more than 30,000 vehicles per day, or at least 10,000 cars and 500 trucks per day. Many more head start and private schools are also exposed.3 An earlier study, found that 13.5% of students attended schools within 820 ft of a major roadway, concluding that minority and underprivileged children were disproportionately affected, although some results varied regionally.4
To better understand pollution patterns, environmental justice issues, and the community responses in Santa Clara County (SCC), we started field research in the Greater Washington Neighborhood of San Jose, CA. We started here because of the proximity of schools to high traffic roadways, and the support that Thriving Neighbors Initiative offered through partnerships with Washington Elementary School (WES) and a network of promotoras that are improving their community and interested in a community-based research
Magnetic fields and Sunyaev-Zel'dovich effect in galaxy clusters
In this work we study the contribution of magnetic fields to the Sunyaev
Zeldovich (SZ) effect in the intracluster medium. In particular we calculate
the SZ angular power spectrum and the central temperature decrement. The effect
of magnetic fields is included in the hydrostatic equilibrium equation by
splitting the Lorentz force into two terms one being the force due to magnetic
pressure which acts outwards and the other being magnetic tension which acts
inwards. A perturbative approach is adopted to solve for the gas density
profile for weak magnetic fields (< 4 micro G}). This leads to an enhancement
of the gas density in the central regions for nearly radial magnetic field
configurations. Previous works had considered the force due to magnetic
pressure alone which is the case only for a special set of field
configurations. However, we see that there exists possible sets of
configurations of ICM magnetic fields where the force due to magnetic tension
will dominate. Subsequently, this effect is extrapolated for typical field
strengths (~ 10 micro G) and scaling arguments are used to estimate the angular
power due to secondary anisotropies at cluster scales. In particular we find
that it is possible to explain the excess power reported by CMB experiments
like CBI, BIMA, ACBAR at l > 2000 with sigma_8 ~ 0.8 (WMAP 5 year data) for
typical cluster magnetic fields. In addition we also see that the magnetic
field effect on the SZ temperature decrement is more pronounced for low mass
clusters ( ~ 2 keV). Future SZ detections of low mass clusters at few arc
second resolution will be able to probe this effect more precisely. Thus, it
will be instructive to explore the implications of this model in greater detail
in future works.Comment: 20 pages, 8 figure
Database computing in HEP
The major SSC experiments are expected to produce up to 1 Petabyte of data per year each. Once the primary reconstruction is completed by farms of inexpensive processors, I/O becomes a major factor in further analysis of the data. We believe that the application of database techniques can significantly reduce the I/O performed in these analyses. We present examples of such I/O reductions in prototypes based on relational and object-oriented databases of CDF data samples
Formation of Cool Cores in Galaxy Clusters via Hierarchical Mergers
We present a new scenario for the formation of cool cores in rich galaxy
clusters based on results from recent high spatial dynamic range, adaptive mesh
Eulerian hydrodynamic simulations of large-scale structure formation. We find
that cores of cool gas, material that would be identified as a classical
cooling flow based on its X-ray luminosity excess and temperature profile, are
built from the accretion of discrete, stable subclusters. Any ``cooling flow''
present is overwhelmed by the velocity field within the cluster - the bulk flow
of gas through the cluster typically has speeds up to about 2,000 km s^-1 and
significant rotation is frequently present in the cluster core. The inclusion
of consistent initial cosmological conditions for the cluster within its
surrounding supercluster environment is crucial when simulating the evolution
of cool cores in rich galaxy clusters. This new model for the hierarchical
assembly of cool gas naturally explains the high frequency of cool cores in
rich galaxy clusters despite the fact that a majority of these clusters show
evidence of substructure which is believed to arise from recent merger
activity. Furthermore, our simulations generate complex cluster cores in
concordance with recent X-ray observations of cool fronts, cool ``bullets'',
and filaments in a number of galaxy clusters. Our simulations were computed
with a coupled N-body, Eulerian, adaptive mesh refinement, hydrodynamics
cosmology code that properly treats the effects of shocks and radiative cooling
by the gas. We employ up to seven levels of refinement to attain a peak
resolution of 15.6 h^-1 kpc within a volume 256 h-1 Mpc on a side and assume a
standard LambdaCDM cosmology.Comment: To appear in ApJ, 41 pages, 20 Figures and 2 Tables. Full resolution
figures are available at http://casa.colorado.edu/~motl/astro-p
Constraining Intra-cluster Gas Models with AMiBA13
Clusters of galaxies have been used extensively to determine cosmological
parameters. A major difficulty in making best use of Sunyaev-Zel'dovich (SZ)
and X-ray observations of clusters for cosmology is that using X-ray
observations it is difficult to measure the temperature distribution and
therefore determine the density distribution in individual clusters of galaxies
out to the virial radius. Observations with the new generation of SZ
instruments are a promising alternative approach. We use clusters of galaxies
drawn from high-resolution adaptive mesh refinement (AMR) cosmological
simulations to study how well we should be able to constrain the large-scale
distribution of the intra-cluster gas (ICG) in individual massive relaxed
clusters using AMiBA in its configuration with 13 1.2-m diameter dishes
(AMiBA13) along with X-ray observations. We show that non-isothermal beta
models provide a good description of the ICG in our simulated relaxed clusters.
We use simulated X-ray observations to estimate the quality of constraints on
the distribution of gas density, and simulated SZ visibilities (AMiBA13
observations) for constraints on the large-scale temperature distribution of
the ICG. We find that AMiBA13 visibilities should constrain the scale radius of
the temperature distribution to about 50% accuracy. We conclude that the
upgraded AMiBA, AMiBA13, should be a powerful instrument to constrain the
large-scale distribution of the ICG.Comment: Accepted for publication in The Astrophysical Journal, 12 pages, 9
figure
Simulation of the Magnetothermal Instability
In many magnetized, dilute astrophysical plasmas, thermal conduction occurs
almost exclusively parallel to magnetic field lines. In this case, the usual
stability criterion for convective stability, the Schwarzschild criterion,
which depends on entropy gradients, is modified. In the magnetized long mean
free path regime, instability occurs for small wavenumbers when (dP/dz)(dln
T/dz) > 0, which we refer to as the Balbus criterion. We refer to the
convective-type instability that results as the magnetothermal instability
(MTI). We use the equations of MHD with anisotropic electron heat conduction to
numerically simulate the linear growth and nonlinear saturation of the MTI in
plane-parallel atmospheres that are unstable according to the Balbus criterion.
The linear growth rates measured from the simulations are in excellent
agreement with the weak field dispersion relation. The addition of isotropic
conduction, e.g. radiation, or strong magnetic fields can damp the growth of
the MTI and affect the nonlinear regime. The instability saturates when the
atmosphere becomes isothermal as the source of free energy is exhausted. By
maintaining a fixed temperature difference between the top and bottom
boundaries of the simulation domain, sustained convective turbulence can be
driven. MTI-stable layers introduced by isotropic conduction are used to
prevent the formation of unresolved, thermal boundary layers. We find that the
largest component of the time-averaged heat flux is due to advective motions as
opposed to the actual thermal conduction itself. Finally, we explore the
implications of this instability for a variety of astrophysical systems, such
as neutron stars, the hot intracluster medium of galaxy clusters, and the
structure of radiatively inefficient accretion flows.Comment: Accepted for publication in Astrophysics and Space Science as
proceedings of the 6th High Energy Density Laboratory Astrophysics (HEDLA)
Conferenc
Search for Narrow Diphoton Resonances and for gamma-gamma+W/Z Signatures in p\bar p Collisions at sqrt(s)=1.8 TeV
We present results of searches for diphoton resonances produced both
inclusively and also in association with a vector boson (W or Z) using 100
pb^{-1} of p\bar p collisions using the CDF detector. We set upper limits on
the product of cross section times branching ratio for both p\bar
p\to\gamma\gamma + X and p\bar p\to\gamma\gamma + W/Z. Comparing the inclusive
production to the expectations from heavy sgoldstinos we derive limits on the
supersymmetry-breaking scale sqrt{F} in the TeV range, depending on the
sgoldstino mass and the choice of other parameters. Also, using a NLO
prediction for the associated production of a Higgs boson with a W or Z boson,
we set an upper limit on the branching ratio for H\to\gamma\gamma. Finally, we
set a lower limit on the mass of a `bosophilic' Higgs boson (e.g. one which
couples only to \gamma, W, and Z$ bosons with standard model couplings) of 82
GeV/c^2 at 95% confidence level.Comment: 30 pages, 11 figure
Search for the Supersymmetric Partner of the Top-Quark in Collisions at
We report on a search for the supersymmetric partner of the top quark (stop)
produced in events using of
collisions at recorded with the Collider Detector at
Fermilab. In the case of a light stop squark, the decay of the top quark into
stop plus the lightest supersymmetric particle (LSP) could have a significant
branching ratio. The observed events are consistent with Standard Model production and decay. Hence, we set limits on the branching ratio of
the top quark decaying into stop plus LSP, excluding branching ratios above 45%
for a LSP mass up to 40 {\rm GeV/c}.Comment: 11 pages, 4 figure
- …