1N-61-CR 1BS. ONLY 198602 2P 437447

Database Computing in HEP—Progress Report

C. T. Day, S. Loken, J. F. MacFarlane Lawrence Berkeley Laboratory ¹

E. May, D. Lifka, E. Lusk, L. E. Price Argonne National Laboratory

A. Baden

Department of Physics University of Maryland

R. Grossman, X. Qin

Department of Mathematics, Statistics, & Computer Science University of Illinois at Chicago

L. Cormell, P. Leibold, D. Liu, U. Nixdorf, B. Scipioni, T. Song Superconducting Supercollider Laboratory

Abstract

The major SSC experiments are expected to produce up to 1 Petabyte of data per year each. Once the primary reconstruction is completed by farms of inexpensive processors, I/O becomes a major factor in further analysis of the data. We believe that the application of database techniques can significantly reduce the I/O performed in these analyses. We present examples of such I/O reductions in prototypes based on relational and object-oriented databases of CDF data samples.

Acknowledgments

Robert Grossman's research was supported part by NASA grant NAG2-513, DOE grant DE-FG02-92ER25133, and the Laboratory for Advanced Computing.

DATABASE (NASA-CR-194791) COMPUTING IN HEP Abstract Only (LBL) 2 p

N94-22375

Unclas

¹Supported by the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.

Status

Computing in High Energy Physics 1992, to appear.