169 research outputs found

    Dosimetric characterization with 62 MeV protons of a silicon-segmented detector for 2D dose verifications in radiotherapy

    Get PDF
    Abstract Due to the features of the modern radiotherapy techniques, namely intensity modulated radiation therapy and proton therapy, where high spatial dose gradients are often present, detectors to be employed for 2D dose verifications have to satisfy very narrow requirements. In particular they have to show high spatial resolution. In the framework of the European Integrated Project—Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology (MAESTRO, no. LSHC-CT-2004-503564), a dosimetric detector adequate for 2D pre-treatment dose verifications was developed. It is a modular detector, based on a monolithic silicon-segmented sensor, with an n-type implantation on an epitaxial p-type layer. Each pixel element is 2×2 mm 2 and the distance center-to-center is 3 mm. The sensor is composed of 21×21 pixels. In this paper, we report the dosimetric characterization of the system with a proton beam. The sensor was irradiated with 62 MeV protons for clinical treatments at INFN-Laboratori Nazionali del Sud (LNS) Catania. The studied parameters were repeatability of a same pixel, response linearity versus absorbed dose, and dose rate and dependence on field size. The obtained results are promising since the performances are within the project specifications

    Order-of-magnitude speedup for steady states and traveling waves via Stokes preconditioning in Channelflow and Openpipeflow

    Full text link
    Steady states and traveling waves play a fundamental role in understanding hydrodynamic problems. Even when unstable, these states provide the bifurcation-theoretic explanation for the origin of the observed states. In turbulent wall-bounded shear flows, these states have been hypothesized to be saddle points organizing the trajectories within a chaotic attractor. These states must be computed with Newton's method or one of its generalizations, since time-integration cannot converge to unstable equilibria. The bottleneck is the solution of linear systems involving the Jacobian of the Navier-Stokes or Boussinesq equations. Originally such computations were carried out by constructing and directly inverting the Jacobian, but this is unfeasible for the matrices arising from three-dimensional hydrodynamic configurations in large domains. A popular method is to seek states that are invariant under numerical time integration. Surprisingly, equilibria may also be found by seeking flows that are invariant under a single very large Backwards-Euler Forwards-Euler timestep. We show that this method, called Stokes preconditioning, is 10 to 50 times faster at computing steady states in plane Couette flow and traveling waves in pipe flow. Moreover, it can be carried out using Channelflow (by Gibson) and Openpipeflow (by Willis) without any changes to these popular spectral codes. We explain the convergence rate as a function of the integration period and Reynolds number by computing the full spectra of the operators corresponding to the Jacobians of both methods.Comment: in Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, ed. Alexander Gelfgat (Springer, 2018

    Nucleosynthesis Calculations for the Ejecta of Neutron Star Coalescences

    Full text link
    We present the results of fully dynamical r-process network calculations for the ejecta of neutron star mergers (NSMs). The late stages of the inspiral and the final violent coalescence of a neutron star binary have been calculated in detail using a 3D hydrodynamics code (Newtonian gravity plus backreaction forces emerging from the emission of gravitational waves) and a realistic nuclear equation of state. The found trajectories for the ejecta serve as input for dynamical r-process calculations where all relevant nuclear reactions (including beta-decays depositing nuclear energy in the expanding material) are followed. We find that all the ejected material undergoes r-process. For an initial Ye close to 0.1 the abundance distributions reproduce very accurately the solar r-process pattern for nuclei with A above 130. For lighter nuclei strongly underabundant (as compared to solar) distributions are encountered. We show that this behaviour is consistent with the latest observations of very old, metal-poor stars, despite simplistic arguments that have recently been raised against the possibility of NSM as possible sources of Galactic r-process material.Comment: 5 pages, 2 figures, proceedings of Nuclei in the Cosmos 2000, to be published in Nucl. Phys. A; minor correctio

    2D dosimeter based on monolithic silicon sensors for beam verification in conformal radiotherapy

    Get PDF
    Due to the features of modern radiotherapy techniques, such as Intensity Modulated Radiation Therapy (IMRT), Stereotactic Treatments with photons and proton therapy, where high spatial dose gradient are often present, detectors to be employed for two-dimensional dose verifications must satisfy narrow requirements. In particular, they have to exhibit high spatial resolution. For these applications, in the framework of the European Integrated project MAESTRO (LSHC-CT-2004-503564) and of the INFN experiment PRIMA, we designed a modular system based on a monolithic silicon segmented sensor. A single sensor has been coupled with readout electronics and tested with satisfactory results by using 6, 10 and 25MV X-rays from a LINAC at the University Hospital of Florence and 62MeV protons at INFN LNS Catania, following MAESTRO procedures. For photons, almost all the channels exhibit performances within project specifications (repeatability ≪0.5%, reproducibility ≪1%, deviation from linearity ≪1%, dose rate dependence ≪1%). For protons, the measured Spread Out Bragg Peak is in good agreement with the one measured with a single diode and the detector shows also a good linearity in the range 20–5000 cGy. The output factors are in agreement with those measured with ionization chamber, single diode or film, within experimental errors

    A 62 MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del Sud-INFN (CATANIA)

    Get PDF
    At the Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy, the first Italian protontherapy facility, named Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) has been built in collaboration with the University of Catania. It is based on the use of the 62-MeV proton beam delivered by the K=800 Superconducting Cyclotron installed and working at INFN-LNS since 1995. The facility is mainly devoted to the treatment of ocular diseases like uveal melanoma. A beam treatment line in air has been assembled together with a dedicated positioning patient system. The facility has been in operation since the beginning of 2002 and 66 patients have been successfully treated up to now. The main features of CATANA together with the clinical and dosimetric features will be extensively described; particularly, the proton beam line, that has been entirely built at LNS, with all its elements, the experimental transversal and depth dose distributions of the 62-MeV proton beam obtained for a final collimator of 25-mm diameter and the experimental depth dose distributions of a modulated proton beam obtained for the same final collimator. Finally, the clinical results over 1 yr of treatments, describing the features of the treated diseases will be reported

    Real-Time Online Monitoring of the Ion Range by Means of Prompt Secondary Radiations

    Get PDF
    International audiencePrompt secondary radiations such as gamma rays and protons can be used for ion-range monitoring during ion therapy either on an energy-slice basis or on a pencil-beam basis. We present a review of the ongoing activities in terms of detector developments, imaging, experimental and theoretical physics issues concerning the correlation between the physical dose and hadronic processe

    Il prodotto e la sua creazione

    No full text
    L'ideazione di prodotti di successo è il motore di sviluppo per tutti i settori basati sulla creatività, sulle valenze estetiche del prodotto. Come si sviluppano idee vicenti? qual è il ruolo del designer in questo settore? è possibile difendersi dall'imitazione? è utile proporre un approccio manageriale al processo di sviluppo prodotto

    Le strategie competitive

    No full text
    Si applica una metodologia per clusterizzare i concorrenti produttori di apparecchi di illuminazione
    corecore