398 research outputs found

    Spectral density of an interacting dot coupled indirectly to conducting leads

    Full text link
    We study the spectral density of electrons rho in an interacting quantum dot (QD) with a hybridization lambda to a non-interacting QD, which in turn is coupled to a non-interacting conduction band. The system corresponds to an impurity Anderson model in which the conduction band has a Lorentzian density of states of width Delta2. We solved the model using perturbation theory in the Coulomb repulsion U (PTU) up to second order and a slave-boson mean-field approximation (SBMFA). The PTU works surprisingly well near the exactly solvable limit Delta2 -> 0. For fixed U and large enough lambda or small enough Delta2, the Kondo peak in rho(omega) splits into two peaks. This splitting can be understood in terms of weakly interacting quasiparticles. Before the splitting takes place the universal properties of the model in the Kondo regime are lost. Using the SBMFA, simple analytical expressions for the occurrence of split peaks are obtained. For small or moderate Delta2, the side bands of rho(omega) have the form of narrow resonances, that were missed in previous studies using the numerical renormalization group. This technique also has shortcomings for describing properly the split Kondo peaks. As the temperature is increased, the intensity of the split Kondo peaks decreases, but it is not completely suppressed at high temperatures.Comment: 13 pages, 13 figures, accepted in Phys. Rev.

    Explicit minimal Scherk saddle towers of arbitrary even genera in R3\R^3

    Get PDF
    Starting from works by Scherk (1835) and by Enneper-Weierstra\ss \ (1863), new minimal surfaces with Scherk ends were found only in 1988 by Karcher (see \cite{Karcher1,Karcher}). In the singly periodic case, Karcher's examples of positive genera had been unique until Traizet obtained new ones in 1996 (see \cite{Traizet}). However, Traizet's construction is implicit and excludes {\it towers}, namely the desingularisation of more than two concurrent planes. Then, new explicit towers were found only in 2006 by Martin and Ramos Batista (see \cite{Martin}), all of them with genus one. For genus two, the first such towers were constructed in 2010 (see \cite{Valerio2}). Back to 2009, implicit towers of arbitrary genera were found in \cite{HMM}. In our present work we obtain {\it explicit} minimal Scherk saddle towers, for any given genus 2k2k, k3k\ge3

    Conductance through an array of quantum dots

    Full text link
    We propose a simple approach to study the conductance through an array of NN interacting quantum dots, weakly coupled to metallic leads. Using a mapping to an effective site which describes the low-lying excitations and a slave-boson representation in the saddle-point approximation, we calculated the conductance through the system. Explicit results are presented for N=1 and N=3: a linear array and an isosceles triangle. For N=1 in the Kondo limit, the results are in very good agreement with previous results obtained with numerical renormalization group (NRG). In the case of the linear trimer for odd NN, when the parameters are such that electron-hole symmetry is induced, we obtain perfect conductance G0=2e2/hG_0=2e^2/h. The validity of the approach is discussed in detail.Comment: to appear in Phys. Rev.

    Dissipative phase-fluctuations in superconducting wires capacitively coupled to diffusive metals

    Full text link
    We study the screening of the Coulomb interaction in a quasi one-dimensional superconductor given by the presence of either a one- or a two-dimensional non-interacting electron gas. To that end, we derive an effective low-energy phase-only action, which amounts to treating the Coulomb and superconducting correlations in the random-phase approximation. We concentrate on the study of dissipation effects in the superconductor, induced by the effect of Coulomb coupling to the diffusive density-modes in the metal, and study its consequences on the static and dynamic conductivity. Our results point towards the importance of the dimensionality of the screening metal in the behavior of the superconducting plasma mode of the wire at low energies. In absence of topological defects, and when the screening is given by a one-dimensional electron gas, the superconducting plasma mode is completely damped in the limit q0q\to 0, and consequently superconductivity is lost in the wire. In contrast, we recover a Drude-response in the conductivity when the screening is provided by a two-dimensional electron gas.Comment: 16 pages, 8 figures, 1 table, 2 appendice

    Crystal-field effects in the mixed-valence compounds Yb2M3Ga9 (M= Rh, Ir)

    Full text link
    Magnetic susceptibility, heat capacity, and electrical resistivity measurements have been carried out on single crystals of the intermediate valence compounds Yb2Rh3Ga9 and Yb2Ir3Ga9. These measurements reveal a large anisotropy due apparently to an interplay between crystalline electric field (CEF) and Kondo effects. The temperature dependence of magnetic susceptibility can be modelled using the Anderson impurity model including CEF within an approach based on the Non-Crossing Approximation.Comment: Accepted to Phys. Rev.

    One- and many-body effects on mirages in quantum corrals

    Full text link
    Recent interesting experiments used scanning tunneling microscopy to study systems involving Kondo impurities in quantum corrals assembled on Cu or noble metal surfaces. The solution of the two-dimensional one-particle Schrodinger equation in a hard wall corral without impurity is useful to predict the conditions under which the Kondo effect can be projected to a remote location (the quantum mirage). To model a soft circular corral, we solve this equation under the potential W*delta(r-r0), where r is the distance to the center of the corral and r0 its radius. We expand the Green's function of electron surface states Gs0 for r<r0 as a discrete sum of contributions from single poles at energies epsilon_i-I*delta_i. The imaginary part delta_i is the half-width of the resonance produced by the soft confining potential, and turns out to be a simple increasing function of epsilon_i. In presence of an impurity, we solve the Anderson model at arbitrary temperatures using the resulting expression for Gs0 and perturbation theory up to second order in the Coulomb repulsion U. We calculate the resulting change in the differential conductance Delta dI/dV as a function of voltage and space, in circular and elliptical corrals, for different conditions, including those corresponding to recent experiments. The main features are reproduced. The role of the direct hybridization between impurity and bulk, the confinement potential, the size of the corral and temperature on the intensity of the mirage are analyzed. We also calculate spin-spin correlation functions.Comment: 13 pages, 12 figures, accepted for publication in Phys. Rev. B. Calculations of spin correlations within an additional approximation adde

    Measurement of IEC Groups and Subgroups Using Advanced Spectrum Estimation Methods

    Get PDF
    The International Electrotechnical Commission (IEC) standards characterize the waveform distortions in power systems with the amplitudes of harmonic and interharmonic groups and subgroups. These groups/subgroups utilize the waveform spectral components obtained from a fixed frequency resolution discrete Fourier transform (DFT). Using the IEC standards allows for a compromise among the different goals, such as the needs for accuracy, simplification, and unification. In some cases, however, the power-system waveforms are characterized by spectral components that the DFT cannot capture with enough accuracy due to the fixed frequency resolution and/or the spectral leakage phenomenon. This paper investigates the possibility of a group/subgroup evaluation using the following advanced spectrum estimation methods: adaptive Prony, estimation of signal parameters via rotational invariance techniques, and root MUltiple-SIgnal Classification (MUSIC). These adaptive methods use variable lengths of time windows of analysis to ensure the best fit of the waveforms; they are not characterized by the fixed frequency resolution and do not suffer from the spectral leakage phenomenon. This paper also presents the results of the applications of these methods to three test waveforms, to current and voltage waveforms obtained from simulations of a real dc arc-furnace plant, and to waveforms measured at the point of common coupling of the low-voltage network supplying a high-performance laser printer

    The TRUFFLE study; fetal monitoring indications for delivery in 310 IUGR infants with 2 year's outcome delivered before 32 weeks of gestation.

    Get PDF
    OBJECTIVE: In the TRUFFLE study on outcome of early fetal growth restriction women were allocated to three timing of delivery plans according to antenatal monitoring strategies based on reduced computerized cardiotocographic heart rate short term variation (c-CTG STV) , early Ductus Venosus (DV p95) or late DV (DV noA) changes. However, many infants were per protocol delivered because of 'safety net' criteria, or for maternal indications, or 'other fetal indications' or after 32 weeks of gestation when the protocol was not applied anymore. It was the objective of the present post-hoc sub-analysis to investigate the indications for delivery in relation to outcome at 2 years in infants delivered before 32 weeks, to come to a further refinement of management proposals. METHODS: we included all 310 cases of the TRUFFLE study with known outcome at 2 years corrected age and 7 perinatal and infant deaths, apart from 7 cases with an inevitable death. Data were analyzed according to the randomization allocation and specified for the intervention indication. RESULTS: overall only 32% of fetuses born alive were delivered according to the specified monitoring parameter for indication for delivery. 38% were delivered because of safety net criteria, 15% because of other fetal reasons and 15% because of maternal reasons. In the c-CTG arm 51% of infants were delivered because of reduced STV. In the DV p95 arm 34% were delivered because of an abnormal DV and in the DV no A wave arm only 10% of cases were delivered accordingly. The majority of fetuses in the DV arms delivered for safety net criteria were delivered because of spontaneous decelerations. Two year's intact survival was highest in the combined DV arms as compared to the c-CTG arm (p = 0.05 when life born, p = 0.21 including fetal death), with no difference between the DV arms. Poorer outcome in the c-CTG arm was restricted to fetuses delivered because of decelerations in the safety net subgroup. Infants delivered because of maternal reasons had the highest birth weight and a non-significant higher intact survival. CONCLUSIONS: In this sub-analysis of fetuses delivered before 32 weeks the majority of infants were delivered for other reasons than according to the allocated CTG or DV monitoring strategy. Since in the DV arms CTG criteria were used as safety net criteria, but in the c-CTG arms no DV safety net criteria were applied, we speculate that the slightly poorer outcome in the CTG arm might be explained by absence of DV data. Optimal timing of delivery of the early IUGR fetus may therefore best be achieved by monitoring them longitudinally with DV and CTG monitoring

    Longitudinal study of computerised cardiotocography in early fetal growth restriction.

    Get PDF
    OBJECTIVES: To explore if in early fetal growth restriction (FGR) the longitudinal pattern of short-term fetal heart rate (FHR) variation (STV) can be used for identifying imminent fetal distress and if abnormalities of FHR registration associate with two-year infant outcome. METHODS: The original TRUFFLE study assessed if in early FGR the use of ductus venosus Doppler pulsatility index (DVPI), in combination with a safety-net of very low STV and / or recurrent decelerations, could improve two-year infant survival without neurological impairment in comparison to computerised cardiotocography (cCTG) with STV calculation only. For this secondary analysis we selected women, who delivered before 32 weeks, and who had consecutive STV data for more than 3 days before delivery, and known infant two-year outcome data. Women who received corticosteroids within 3 days of delivery were excluded. Individual regression line algorithms of all STV values except the last one were calculated. Life table analysis and Cox regression analysis were used to calculate the day by day risk for a low STV or very low STV and / or FHR decelerations (DVPI group safety-net) and to assess which parameters were associated to this risk. Furthermore, it was assessed if STV pattern, lowest STV value or recurrent FHR decelerations were associated with two-year infant outcome. RESULTS: One hundred and fourty-nine women matched the inclusion criteria. Using the individual STV regression lines prediction of a last STV below the cCTG-group cut-off had a sensitivity of 0.42 and specificity of 0.91. For each day after inclusion the median risk for a low STV(cCTG criteria) was 4% (Interquartile range (IQR) 2% to 7%) and for a very low STV and / or recurrent decelerations (DVPI safety-net criteria) 5% (IQR 4 to 7%). Measures of STV pattern, fetal Doppler (arterial or venous), birthweight MoM or gestational age did not improve daily risk prediction usefully. There was no association of STV regression coefficients, a last low STV or /and recurrent decelerations with short or long term infant outcomes. CONCLUSION: The TRUFFLE study showed that a strategy of DVPI monitoring with a safety-net delivery indication of very low STV and / or recurrent decelerations could increase infant survival without neurological impairment at two years. This post-hoc analysis demonstrates that in early FGR the day by day risk of an abnormal cCTG as defined by the DVPI protocol safety-net criteria is 5%, and that prediction of this is not possible. This supports the rationale for cCTG monitoring more often than daily in these high-risk fetuses. Low STV and/or recurrent decelerations were not associated with adverse infant outcome and it appears safe to delay intervention until such abnormalities occur, as long as DVPI is in the normal range
    corecore