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EXPLICIT MINIMAL SCHERK SADDLE TOWERS OF

ARBITRARY EVEN GENERA IN R3

A. J. Yucra Hancco∗, G. A. Lobos, and V. Ramos Batista

Abstract: Starting from works by Scherk (1835) and by Enneper–Weierstraß (1863),

new minimal surfaces with Scherk ends were found only in 1988 by Karcher (see [9,

10]). In the singly periodic case, Karcher’s examples of positive genera had been
unique until Traizet obtained new ones in 1996 (see [23]). However, Traizet’s con-

struction is implicit and excludes towers, namely the desingularisation of more than

two concurrent planes. Then, new explicit towers were found only in 2006 by Mart́ın
and Ramos Batista (see [13]), all of them with genus one. For genus two, the first

such towers were constructed in 2010 (see [22]). Back to 2009, implicit towers of

arbitrary genera were found in [5]. In our present work we obtain explicit minimal
Scherk saddle towers, for any given genus 2k, k ≥ 3.
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1. Introduction

Let S be a complete minimal surface embedded in R3 and of finite
total curvature. If S is neither a plane nor a catenoid, the works of
Schoen [21] and López–Ros [12] show that S must have positive genus
and a number of ends n ≤ 3. Such an S was unknown until 1984,
when Costa obtained his famous example [3]. It was later generalised
by Hoffman–Meeks and Hoffman–Karcher in [7] and [6], respectively.
Moreover, in [7] the authors launched their conjecture that n ≤ genus+2
for any such S, which still remains open after over a quarter of a century.

In 2005, a partial answer to this conjecture was found by Meeks,
Pérez, and Ros (see [14]). The authors proved that each n ≥ 2 has an
upper bound that only depends on the genus.

For S embedded in a flat space, in 1989 Karcher presented several ex-
amples that answer many important questions in the Theory of Minimal
Surfaces [9, 10]. Among others, he obtained the first S with positive
genera and helicoidal ends, proved the existence of Schoen’s surfaces [20],
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and found singly and doubly periodic S that do not belong to Scherk’s
minimal surface families.

By the way, Karcher constructed saddle towers S of genera zero and
one (in the quotient by their translation group), and number of ends n =
2k, k ≥ genus + 2. Since then, very few new explicit S were found, such
as in [13, 22]. This can be due to strong restrictions that underlie these
surfaces.

For the genus zero case, however, a full classification was achieved
in 2007. When k = 2, Meeks and Wolf proved in [15] that S belongs to
Scherk’s second family under the assumption of infinite symmetry. Later
on, without this assumption Pérez and Traizet proved in [18] that, for
any k ≥ 2, S must be one of the surfaces constructed by Karcher.

Figure 1. A Scherk saddle tower of genus 2k, k = 3.

In this work we present the first explicit S of arbitrary genera 2k and
2k Scherk ends, k ≥ 3. More specifically, we prove

Theorem 1.1. For each natural k ≥ 3 there exists a continuous one-
parameter family of embedded minimal saddle towers in R3, of which any
member ST2k has its symmetry group generated by the following maps:
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1. π-rotation about the line [(cot π
2k , 1, 0)] ⊂ R3;

2. reflection in the vertical plane Ox1x3;
3. reflection in the horizontal plane (0, 0, 1) +Ox1x2.

Symmetries 1 and 3 imply that ST2k are invariant by the translation
group G=〈(0,0,4)〉. Moreover, ST2k/G has 2k Scherk ends and genus 2k.
The surfaces ST2k are embedded in R3.

Notice that items 1 and 2 make ST2k invariant by ρ, defined as the
composite of π/k-rotation around Ox3 and reflection in Ox1x2. The
symmetry ρ will be useful in our constructions.

Regarding explicit saddle towers S with arbitrary odd genus, we are
convinced of their existence but we prefer to leave it as an open question,
in spite of [5]. There the authors constructed implicit examples for any
positive genus, for which however the inequality n ≥ 2 (genus + 2) does
not hold. Although this could not be another kind of Hoffman–Meeks
conjecture, the examples from Theorem 1.1 still verify that inequality
like all explicit examples found to date.

In fact, if one aims at classifying minimal surfaces, then explicit con-
structions are strictly necessary.

2. Preliminaries

This section presents some basic definitions and theorems used
throughout this work. We only consider surfaces that are regular and
connected. For details see [2, 4, 6, 8, 10, 11, 16, 17].

Theorem 2.1. Let X : R → E be a complete isometric immersion of
a Riemann surface R into a three-dimensional flat space E. If X is
minimal and the total Gaussian curvature

∫
R
K dA is finite, then R is

conformal to R\{p1, p2, . . . , pr}, where R is a compact Riemann surface
and r is a certain number of points {p1, p2, . . . , pr} ⊂ R.

Theorem 2.2 (Weierstraß Representation). Let R be a Riemann sur-
face, g and dh meromorphic function and 1-differential form on R, such
that the zeros of dh coincide with the poles and zeros of g. Suppose that
X : R→ E given by

(1) X(p) := Re

∫ p

Φ, Φ =
1

2
(1/g − g, i/g + ig, 2) dh

is well-defined. The X is a conformal minimal immersion. Conversely,
every conformal minimal immersion X : R→ E can be expressed as (1)
for some meromorphic function g and 1-form dh.
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Definition 2.1. The pair (g, dh) is the Weierstraß data and the compo-
nents of Φ = (φ1, φ2, φ3) are the Weierstraß forms on R of the minimal
immersion X : R→ X(R) ⊂ E.

Definition 2.2. Let R and R be as in Theorems 2.1 and 2.2. An
end of R is the image by X of a punched neighbourhood Vp, p ∈
{p1, p2, . . . , pr}, such that ({p1, p2, . . . , pr} \ {p}) ∩ V p = ∅. The end
is embedded if X : Vp → E is an embedding for a sufficiently small Vp.

Theorem 2.3. Under the hypotheses of Theorems 2.1 and 2.2, the
Weierstraß data (g, dh) extend meromorphically on R.

Theorem 2.4 (Jorge–Meeks Formula). Let X : R → E be a complete
minimal surface with finite total curvature

∫
R
K dA. If R has ends that

are all embedded, then deg(g) = k + r − 1, where k is the genus of
R = R ∪ {p1, p2, . . . , pr} and r is the number of ends.

Remark 2.1. In the proof of Theorem 2.4, for the case of Scherk-ends
the variable r counts them in pairs. The function g is the stereographic
projection of the Gauß map N : R → S2 of the minimal immersion X.

It is a branched covering map of Ĉ and
∫
R
K dA = −4π deg(g).

3. Construction of the surfaces ST2k

In Theorem 1.1 we denoted our surfaces by ST2k. This theorem is
proved by Karcher’s reverse construction method. Namely, we derive
a list of necessary conditions that must hold in case the surfaces exist.
They will end up in algebraic equations for R, g, and dh. At this point,
Theorems 2.1 and 2.2 apply. Afterwards, we must prove that X : R→ E
really corresponds to each surface ST2k from Theorem 1.1.

Suppose we had a minimal surface like in Figure 1. Take the quotient
by its translation group, followed by a compactification of the ends. We
get a fundamental piece S.

Now S has genus 2k, and we assume that S is invariant by π/k-rota-
tion around Ox3 followed by a reflection in Ox1x2. Let us denote this
symmetry by ρ. Hence, the Euler characteristic of ρ(S) is

χ(ρ(S)) =
χ(S)

2k
+

2k − 1

2k
· 2 =

1

k
− 2 + 2− 1

k
= 0.

Therefore, ρ(S) is a torus T . Due to the horizontal reflectional symme-
tries of S, T is a rectangular torus.
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3.1. The function z on S and the Gauß map g(z). We have just
obtained the rectangular torus T = ρ(S). Let us now obtain two mero-
morphic functions g, z on S through the pullback by ρ of functions on T .
Because of Remark 2.1, g will be constructed by looking at the stere-

ographic projection of the Gauß map N : S → S2 = Ĉ. Regarding z,
we choose it to make the relation g = g(z) as simple as possible. See
Figure 2 for an illustration.

z = 1/x (2)

z = 1/y (4k)

z = 1

z = y (4k)
π/2k

z

−1

x (2)z = 1
90◦

{ −1

curve U

Scherk end

Scherk curve

−1 1

x y
×

reg. point

×

×

Figure 2. Values of z at special points of S.

In [19] the author considers an elliptic function Z ′ : T → C as schema-

tised in Figure 3. We define z : S → Ĉ as z := Z ′ ◦ ρ.

−1 1

x y
×

x2

x1

Z′

x y

−1 1

×

−1 1

×

Figure 3. The torus T with some special values of Z ′.

By looking at the normal vector on S, we know that g has poles and
zeros as shown in Figure 4.
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g

0

∞

∞k−1

0k−1

0

∞

Figure 4. Poles and zeros of g on S.

The corresponding values of z and g are represented in Figures 2 and 4,
including multiplicities. Therefore, we obtain the following algebraic
relation between g and z:

(2) g4k = c

(
z − y
1− yz

)k−1(
1− xz
x− z

)2k

,

where c is a real constant. From Figure 2, we see that along z(t) = eiπt,
0 < t < 1, the following holds: |g| = 1⇐⇒ |z| = 1. Therefore,

|g4k| =
∣∣∣∣∣c
(
y − z
1− yz

)k−1(
1− xz
x− z

)2k
∣∣∣∣∣ ,

which implies |c| = 1. For z = 1 we have g = eiπ(1+k)/k, hence c = 1.

×

x2

x1

0

g

−1 1

π
k

π
2
− π

2k

0

x2

x1

x2

x1

Figure 5. The fundamental domain viewed from above
and the corresponding values of g.
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From (2), and based on Figures 2 and 5, we summarise what we know
about g and dh in Table 1. Of course, we have not defined dh yet but it
is determined by g, according to the theorems listed in Section 2.

stretch z-values g-values dh(z′)-values

1 z(t) = eiπt, 0 < t < 1 |g| = 1 ∈ iR
2 −1 < z < x g ≤ −1 /∈ R ∪ iR
3 x < z < −1 g ≥ 1 /∈ R ∪ iR
4 z(t) = eiπt, −1 < t < 0 |g| = 1 ∈ iR
5 1 < z < y ∈ −ie.5πi/kR ∈ iR
6 y < z < 1 ∈ −eπi/kR ∈ R

Table 1. Values of g and dh(z′) along the symmetry curves.

Remark 3.1. As we shall see in Section 4, along the stretches 2 and 3
from Table 1, dh(z′) takes complex values not in R ∪ iR. We shall get
conditions that are sufficient to prove the existence of symmetry curves.
However, ST2k will not have more symmetries than the ones listed in
Theorem 1.1.

Table 1 shows that g is consistent with the normal vector on S along
special curves on the surface. Now we list important involutions of S
related with the symmetries of ST2k in R3. Based on (2) and Figures 2
and 5 we can summarise these involutions in Table 2:

symmetry involution g ∈

z(t) = eiπt, 0 < t < 1 (z, g)→ (1/z, 1/g) S1

−1 < z < x (z, g)→ (z, g) (−∞,−1)

x < z < −1 (z, g)→ (z, g) (1,∞)

z(t) = eiπt, −1 < t < 0 (z, g)→ (1/z, 1/g) S1

1 < z < y (z, g)→ (z,−eiπ/kg) −ie.5iπ/kR
y < z < 1 (z, g)→ (z, e2iπ/kg) −eiπ/kR

Table 2. Involutions on S.
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4. The differential dh in terms of z

Since ST2k has Scherk-ends, their corresponding points of S are ex-
actly the poles of dh. Regarding the zeros of dh, they coincide with the
points of S at which g = 0 or g = ∞, including multiplicity. We shall
have to read off information about dz in order to write down an equation
for dh.

∞

0k−1

0

dh

∞

0

0
0

0k−1

Figure 6. Poles and zeros of dh on S.

Figure 2 shows two points marked with × at which z = y and z = 1/y.
There we have dz = 0 of order 4k−1. Moreover, at z = x we have dz = 0
of order 1. Now Figure 7 illustrates the divisor of dh.

dz

0

∞2

×
0×

∞2 04k−1

04k−1

dh

dz

02

(b)

∞

∞

×

×02

∞3k

∞3k

(a)

Figure 7. (a) Divisor of dz on S; (b) divisor of dh/dz
on S.

In order to obtain dh by means of dz, we must analyse the divisor of
f := (1−yz)(y−z). According to Figure 7(a), it is sufficient to construct

F : S → Ĉ such that F = f · dh/dz. Once we have F , then

dh = Fdz/f.
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Notice that there are distinct points of S at which z takes the same
value 1, namely at the ends and at certain regular points. Since dh
has no poles except for the ends, then we shall have to introduce new
functions besides z and g. They are depicted in Figure 9. In this figure

v2 = 1− i

v1

(
1− y
1 + y

)
,

where

v1 :=

√(
1− x
1 + x

)2

−
(

1− y
1 + y

)2

.

∞2

×

×

∞2 04k

04k

(a)

0k

∞

∞
0

0k

(b)

Figure 8. (a) Values of f ; (b) values of f · dh/dz on S.

x y
×

i z

Scherk end

reg. point

Scherk end

×

reg. point

corresp. to curve U

1
√
2

√
v2

F

Figure 9. The function F =

√
1− i

w

(
1−y
1+y

)
.
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Now

w :=

√(
1− z
1 + z

)2

−
(

1− y
1 + y

)2

,

is well-defined in a branched covering of S that we call R. The algebraic
equation of R will be discussed later on. This way we get

F =

√
1− i

w

(
1− y
1 + y

)
.

Therefore, F · f · dh/dz has neither poles nor zeros, whence must be
a non-zero complex constant c. Namely,

(3) dh = c · Fdz/f,
where F := 1/F . Now we show that c = 1. Indeed, since stretch 5
in Table 1 is represented by a straight line, the 3rd coordinate of (1)
must be zero. But along this stretch we have Fdz/f ∈ iR, and in (1) we
compute the real part of a complex integral. Hence c must be real. The
property of a surface being minimal in R3 is preserved by the antipodal
map and by homotheties. Therefore we can take c = 1.

0

0

dz
∞2

×

×

∞2 04k−1

04k−1

dh

dz

∞

∞

02×

×02

∞3k

∞3k

(b)(a)

Figure 10. Values of F on S.

According to Theorems 2.1 and 2.2, dh can be defined on S by a
rational function involving only g, dg, z, and dz. However, its formula
is probably far too extensive. Then we use square roots as explained
above. Of course, they are not well-defined on S, but on a branched
covering that we call R. In order to describe R by an algebraic equation,
we consider

F =

√
1− i

w

(
1− y
1 + y

)
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and

w2 =
4f

(1 + z)2(1 + y)2
,

whence

(F2 − 1)2 = −1

4

(1 + z)2(1− y)2

(y − z)(1− yz) .

This way we get the polynomial

az2 + bz + c = 0,

where a, b, and c depend on F and on some complex constants. This
results in

(4) z =
−b±

√
∆

2a
.

Now (2) can be rewritten as

(5) A3k−1(g) · z3k−1 + · · ·+A0(g) = 0,

where Aj is a polynomial in g, ∀ j. By applying (4) to (5) we get

(6) ±
√

∆ · E1 = E2,

where E1 and E2 are polynomials in g and F . We square both sides
of (6) and finally get a polynomial P (g,F) = 0, which gives an algebraic
equation for R. The functions g and F are then well-defined on R. Of
course, there is a projection B : R→ S given by B(g,F) = g. However,
there is no projection that makes F well-defined on S, since we must use
square roots to equate F on S.

We recall (3) and see that F/f is a rational function on R. However,
all computations there would have to match the computations on S that
use square roots, because R was obtained from them. Therefore, we
shall keep on working with the square roots.

Now we can analyse dh along the symmetry curves in Table 1. Observe
that

(7) dh =
z

f
· 1

F ·
dz

z
.

On the stretch y < z < 1 the function F is real and positive, whereas
f is real and negative. Since the curve is z(t) = t, we have dh(z′) ∈ R.
For 1 < z < y, −iF is real and negative, thus dh(z′) ∈ iR.

Regarding stretches 1 and 4, there we have z(t) = eiπt, 0 < t < 1, and
−1 < t < 0, respectively. Notice that z/f = y−1/(1/z + z − (1/y + y))
and on these stretches z/f and F are both real. Therefore, dh(z′) ∈ iR
because dz/z ∈ iR.
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From Table 1 we see that the z-curves 2 and 3 are geodesics. Moreover,
the geodesics are planar curves in cases 1, 4, and 6 because (dh·dg/g)|z′ ∈
R, and a straight line in case 5 because (dh · dg/g)|z′ ∈ iR. Therefore,
our minimal surfaces ST2k are symmetric with respect to 1, 4, 5, and 6.

But we recall Remark 3.1 regarding curves 2 and 3. From Table 1,
dh(z′) /∈ R ∪ iR. Indeed, for z(t) = t, −1 < t < x, we have z/f ∈ R
and F /∈ R ∪ iR. Hence dh(z′) /∈ R ∪ iR. The surfaces ST2k are not
symmetric with respect to the curves 2 and 3, as we shall prove later.

5. The period problem

Figure 5 shows the fundamental domain of ST2k. Some important
details are reproduced again in Figure 11(a), but there we indicate a
path that begins at a point marked with ×. The path goes upwards and
then from the right to the left-hand side, where we find its end. If the
×-point is the origin of R3, then the end of the path ought to be in the
plane x2 = 0. This path is what we call a period curve.

×

x2

x1

(a) (b)

Figure 11. Period curves.

Another one is the U -curve in Figure 11(b). Its period is zero if it has
both extremes at the same height. This is determined by the integral
of dh alone, and dh is given by square roots. What happens is that
their signs change at the vertex of the U -curve, marked with a bullet in
Figure 11. The change of sign automatically implies that both extremes
of the U -curve do attain the same height.

We recall that dh has an algebraic expression in S involving
(z, g, dz, dg). This is ensured by Theorems 2.1 and 2.2. Since dh =
dh(z, g, dz, dg) on S is the general expression, it involves extra complex
parameters. For the U -curve, its extremes will have heights that depend
on these parameters, and the heights will not coincide in general. How-
ever, by using square roots in the local expression of dh on S, the extra
parameters are forced to assume constant values. In fact, we do not even
discuss them because of the straight choice of (3). But there still remain
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the two free parameters x and y, which also take part in the algebraic
equation of R.

Hence, we only have one period problem. For convenience of the
reader, herewith we reproduce the Weierstraß data:

(8) g4k = (−1)k−1
(
y − z
1− yz

)k−1(
1− xz
x− z

)2k

,

(9) dh =
1√

1− i(1−y)
w(1+y)

dz

(1− yz)(y − z) ,

where

(10) w =

√(
1− z
1 + z

)2

−
(

1− y
1 + y

)2

.

Let us now analyse some special stretches depicted in Figure 11(a).
According to the branches of square root that we have chosen, 1 =
e4(k+1)πi for z(t) = t, y ≤ t ≤ 1, which is the upward stretch from × to
a point in z−1(1). Hence

(11) g = −eiπ/k
(
t− y
1− yt

) k−1
4k
(

1− xt
t− x

) 1
2

.

Along the stretch z(t) = eit, 0 ≤ t ≤ π, we have

(12) g = −e iπk · e i(k+1)t
4k

(
y − eit
y − e−it

) k−1
4k
(
x− e−it
x− eit

) 1
2

.

Now we analyse w more carefully along z(t) = t, y ≤ t ≤ 1. From (10)
we have

w = −2i
√

(1− yt)(t− y)

(1 + t)(1 + y)
.

Let us define Y := i(1− y)/(1 + y). Hence

Y

w
= −1

2

(1 + t)(1− y)√
(1− yt)(t− y)

,

and therefore

dh =
1√

1 + (1+t)(1−y)/2√
(1−yt)(t−y)

dt

(1− yt)(y − t) .

Finally,

(13) dh=
1

{[(1−yt)(t−y)]1/2+(1+t)(1−y)/2}1/2 ·
dt

[(1−yt)(t−y)]3/4
.
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In general, (10) rewrites as

w

Y
= −2i

√
(1− yz)(z − y)

(1 + z)(1 + y)

(1 + y)

i(1− y)
= −2

√
y
√

(1/y + y)− (1/z + z)√
z(1/z + 1)(1− y)

,

and

dh =
1/y√

1− i(1−y)
w(1+y)

dz/z

(1/y − z)(y/z − 1)

=
1/y√

1− i(1−y)
w(1+y)

dz/z

(1/z + z)− (1/y + y)
.

For z(t) = eit, 0 ≤ t ≤ π, this results in

w

Y
= −
√
y
√
−2 cos t+ (1/y + y)

(1− y) cos(t/2)
⇒
√

1− Y

w

=

√
1 +

(1− y)(cos(t/2))√
y(1/y + y − 2 cos t)1/2

.

Hence

(14) dh =
i/y√

1 + (1−y) cos(t/2)√
y(1/y+y−2 cos t)1/2

dt

2 cos t− (1/y + y)
.

Associated with z(t) = t, y ≤ t ≤ 1, we have

(15) Ik1 = Re

∫ 1

y

φ2 dh = Re

∫ 1

y

(
i

g
+ ig

)
dh.

From (11), (13), and the change of variables t = y + s4k we have

Ik1
∣∣
(y,x)

=Re i

∫ (1−y)1/4k

0

{[
−e−iπ/k

(
1

1−y2−s4ky

)− k−1
4k
(

1−x(y+s4k)

(y+s4k)−x

)−1/2

−eiπ/ks2(k−1)
(

1

1− y2 − s4ky

) k−1
4k
(

1− x(y + s4k)

(y + s4k)− x

)1/2
]

× 1√√
(1−y2−s4ky)(s4k)+ (1+y+s4k)(1−y)

2

4kds
4
√

[(1−y2−s4ky)]3



.
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We recall that y ∈ (0, 1) and x ∈ (−1, 0). For (y, x) → (0,−1) we
have

(16) Ik1
∣∣
(0,−1) = Re

{
4k
√

2i

∫ 1

0

[
−e−iπ/k − eiπ/ks2(k−1)

] ds

1 + s2k

}
.

Let us observe what happens to (16) when k = 3:

Ik1
∣∣
(0,−1) = Re

{
12
√

2i

[
−e−iπ/3

∫ 1

0

ds

1 + s6
− eiπ/3

∫ 1

0

s4ds

1 + s6

]}
.

Since

∫
ds

1 + s6
=

1

12

(
−
√

3 ln (s2 −
√

3s+ 1) +
√

3 ln (s2 +
√

3s+ 1)

−2 arctan(
√

3− 2s)+4 arctan(s) + 2 arctan(2s+
√

3)
)
,

∫
s4ds

1 + s6
=

1

12

(√
3 ln (s2 −

√
3s+ 1)−

√
3 ln (s2 +

√
3s+ 1)

−2 arctan(
√

3− 2s)+4 arctan(s) + 2 arctan(2s+
√

3)
)
,

then

Ik1
∣∣
(0,−1) ≈ Re

{
i12
√

2
[
e−iπ/3(0.90377) + eiπ/3(0.14343)

]}
,

Ik1
∣∣
(0,−1) ≈ −11.17447.

Now we compute Ik1 for (y, x)→ (0, 0):

(17) Ik1
∣∣
(0,0)

=Re

{
i4k
√

2

∫ 1

0

[
−e−iπ/ks2k − eiπ/ks−2

] ds

1 + s2k

}
=+∞.

Hence −Ik1
∣∣
(0,0)

= −∞ ∀ k. For the horizontal path depicted in Fig-

ure 13(a) we have

(18) Ik2 = Re

∫

α

φ2 dh = Re

∫

α

(
i

g
+ ig

)
dh,
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where α(t) = eit with 0 ≤ t ≤ π. From (12) and (14) we have

Ik2 = Re i

∫ π

0





[
−e−iπk e−

i(k+1)t
4k

(
y − eit
y − e−it

)− k−1
4k
(
x− e−it
x− eit

)− 1
2

−e iπk e i(k+1)t
4k

(
y − eit
y − e−it

) k−1
4k
(
x− e−it
x− eit

) 1
2

]

× i/y√
1 + (1−y) cos(t/2)√

y(1/y+y−2 cos t)1/2

dt

2 cos t− (1/y + y)



 .

(19)

We begin with Ik2 and make (y, x)→ (0,−1). This results in

(20) Ik2
∣∣
(0,−1) = −2 Re

{∫ π

0

cos

(
4π + t(k − 1)

4k

)
dt√

1 + cos(t/2)

}
.

For k = 3, (20) becomes

(21) I32
∣∣
(0,−1) = −2 Re

{∫ π

0

cos

(
2π + t

6

)
dt√

1 + cos(t/2)

}
.

Since 0 ≤ t ≤ π, (21) rewrites as

−2 ≤ −2 cos

(
2π + t

6

)
1√

1 + cos(t/2)
≤ 2,

whence
−2π ≤ I32

∣∣
(0,−1) ≤ 2π.

Finally, we analyse Ik2 when (y, x)→ (0, 0). From (19) it follows that

(22) Ik2
∣∣
(0,0)

= −Re 2

∫ π

0

cos

(
4π − t(k + 1)

4k

)
dt√

1 + cos(t/2)
.

For k = 3, (22) rewrites as

I32
∣∣
(0,0)

= −Re 2

∫ π

0

cos

(
π − t

3

)
dt√

1 + cos(t/2)
.

Since 0 ≤ t ≤ π, then

−2 ≤ −2 cos

(
π − t

3

)
1√

1 + cos(t/2)
≤ 2

whence
−2π ≤ I32

∣∣
(0,0)
≤ 2π.
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Therefore,

I31
∣∣
(0,−1) ≈ −11.1747,

−2π ≤ I32
∣∣
(0,−1) ≤ 2π,

and then −I31 > I32 at (0,−1). Now

−I31
∣∣
(0,0)

= −∞,
−2π ≤ I32

∣∣
(0,0)
≤ 2π,

whence −I31 < I32 at (0, 0). By the Intermediate Value Theorem, there
exists a point (y∗, x∗) at which −I31 = I32 . We are ready to prove the
following result, which concludes this section:

Lemma 5.1. For any natural k ≥ 3 there exists a point at which −Ik1 =
Ik2 .

Proof: From (16), −Ik1
∣∣
(0,−1) will be increasing with k exactly when

π · sin(π/k)(π/k) ·
(
−s−2 + 1+s−2

1+s2k

)
is increasing with k. But this is obvious to

the function sin(π/k)
(π/k) , and also to the function −s−2 + 1+s−2

1+s2k
. Since both

are positive, then −Ik1
∣∣
(0,−1) is increasing with k. Moreover, for all k ≥ 3

we have

−2π ≤ Ik2
∣∣
(0,−1) ≤ 2π,

−2π ≤ Ik2
∣∣
(0,0)
≤ 2π,

because these inequalities hold for k = 3, and the same computations
lead to the general case. Hence −Ik1

∣∣
(0,−1) ≥ −I31

∣∣
(0,−1) > Ik2

∣∣
(0,−1), and

also −Ik1
∣∣
(0,0)

= −∞ < Ik2
∣∣
(0,0)

.

We conclude this section by showing that the ST2k form a continuous
one-parameter family of surfaces. Of course, our ST2k are given by the
Weierstraß data (8) and (9), both defined on S \ {p1, . . . , p2k}. The
algebraic equation of S is again (8), and pj are exactly the poles of dh,
j = 1, . . . , 2k. Moreover, (y, x) are the points that Lemma 5.1 refers to.

Fix k ≥ 3 and a point (y∗, x∗) at which −Ik1 = Ik2 . Notice that Ik1
and Ik2 are both real analytic functions of (y, x). According to the proof
of Lemma 5.1, we can take (y∗, x∗) as a point obtained by a crossing of
their graphs, which is transversal up to arbitrarily small perturbations.
Now standard arguments from Differential Topology show that (y∗, x∗)
must belong to a whole solution curve C in the triangular domain {(y, x) |
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−1 < x < y < 1}. We can parametrise C as (y(t), x(t)), and then
t parametrises ST2k as well.

Such arguments were already detailed in other works, and so we shall
skip them here. See, for instance [1, pp. 101–102].

6. Embeddedness

We recapitulate that the compact Riemann surface S is given by (2),
where (x, y) is the point that Lemma 5.1 refers to. If B ⊂ S denotes the
branch points of g, then the ends of S are {p1, . . . , p2k} = z−1(1) \ B,
as shown in the next subsection. We have dh defined on S, with a
local expression given by (3). From Theorem 2.2, this defines a minimal
immersion X : R→ E, where R = S \ {p1, . . . , p2k}. The purpose of this
section is to prove that X is an embedding.

6.1. Poles and zeros of dg. We know that deg(dg) = −χS = 4k − 2.
According to Figure 4, dg should have exactly k + (2 + 2)k = 5k poles.
Notice that the multiplicity is always included in our analysis.

Since deg(dg) = Nr zeros(g)− Nr poles(g), then dg has exactly 9k −
2 zeros. Now we are going to locate these zeros by geometric arguments.
They can be checked analytically from (2).

According to Figure 4, k − 2 of the zeros are at the saddle point
marked with × in Figure 2 where z = y. We have k 4-fold saddle points
along each horizontal closed curve of symmetry, which gives a subtotal
of 2k points. Each of them adds 2 zeros for dg. Hitherto we have
5k − 2 zeros.

Somewhere along each ray that departs from the ×-point, the unitary
normal has an inflexion, hence dg = 0 there. By counting all such rays,
at the top and at the bottom of the fundamental piece, we arrive at the
4k remaining zeros that finally totalize 9k − 2.

6.2. The U-curve. Soon we shall see that the U -curve is not of sym-
metry. However, in Section 4 we explained that our dh is a particular
case of a more general formula that should involve z, dz, g, and dg.
Therefore, it is highly possible that, for each k, the surfaces ST2k are
representatives of a continuous two-parameter family of surfaces. This
family is very likely to have more symmetric members for which the
U -curve is of symmetry.

Therefore, herewith we present arguments under this assumption. It
will be slacked later, but the reader will notice how simple the arguments
are in this case. Most of these arguments remain valid in the slacked case,
and so we ease the understanding of our proof.
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We named P the fundamental piece of ST2k. In Figure 13, the shaded
region represents a fundamental domain of P .

x y

−1 1

×

−1 1

×

Figure 12. A fundamental domain in the torus T .

×

×

Figure 13. A fundamental domain of P .

Let R be the circle in Figure 14 left. The image D = g(R) is depicted

in Figure 14 right. It is contained in a hemisphere of S2 = Ĉ. Hence,
there is a direction in which the orthogonal projection of X(R) is an im-
mersion. For instance, direction Ox2. This way (x1, x3) : R → R2 is an
immersion when restricted to the interior of R. The image (x1, x3)(R) ⊂
R2 has one out of four basic features described in Figure 15.

If the U -curve is planar, then it is convex. Indeed, the Gaussian
curvature

K = −
(

2

|g|+ 1/|g|

)4 ∣∣∣∣
dg/g

dh

∣∣∣∣
2

vanishes on U exactly where dg = 0 there. But in Subsection 6.1 we saw
that this never happens.
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×

x2

0−1 1 x1

g

π
2
− π

2kπ
k

−1 1

x y

Figure 14. Image D = g(R).

× ×

× ×

x2 x1

x3

(a) (b)

(c) (d)

x3

x3 x3

x2 x1

x2 x2x1 x1

Figure 15. Four basic features of (x1, x3)(R).

Since (x1, x3)
∣∣
R is an immersion, it is open and continuous. Hence,

(x1, x3)(R) is an open connected subset of R2, which discards Fig-
ure 15(b). Figures 15(c) and 15(d) are also discarded because g is injec-
tive along U . We finally remain with Figure 15(a).

Let G be the interior of (x1, x3)(R), which is simply connected. Of

course, R ⊂ Ĉ and (x1, x3) extends continuously to (x1, x3) : R → Ĉ by
taking (x1, x3)(∞) =∞. The pre-image of any point in (x1, x3)(R) is a
finite subset of R, otherwise it would have an accumulation point at the
boundary of R, but ∂G consists of monotone curves. Hence, (x1, x3)

∣∣
R

is a covering map of the simply connected G.
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Namely, (x1, x3)
∣∣
R is injective. Therefore, (x1, x2, x3) : R → R3 is a

graph.

Remark 6.1. The U -curve is not a symmetry curve. Otherwise, it would
be in Ox1x3 and the conjugate minimal surface would have a straight
segment perpendicular to this plane. But i dh is the 3rd coordinate of
the conjugate, and so its real part should be zero along the segment.
However, in Section 4 we saw that dh 6∈ R ∪ iR along this curve.

6.3. Embeddedness proof. We shall some ideas from [22]. Two
copies of the fundamental domain are represented in Figure 16, together
with corresponding z-image, namely two superimposed unitary disks.

x y

−1 1z

×

×

×

Figure 16. Two copies of the fundamental domain and
their z-image.

The corresponding g-image is depicted in Figure 17. Let Γ be the
z-image of the U -curve. Then Γ separates the superimposed disks into
two disjoint components A and B.

Figure 17 shows that g(A) is the conjugate of g(B), whereas g(Γ) =

R̂ \ {(−1, 1)}.
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x2

×−1 1

x y

g
0

−1 1
x1

π
k

π
2
− π

2k

Figure 17. The g-image of A ∪ B.

In Subsection 6.2 we saw that (x1, x3) : A → R2 and (x1, x3) : B → R2

are both immersions. Again, Figure 15 shows the four possible features
of (x1, x3)(A). Since dg never vanishes along the U -curve, then Fig-
ures 15(c) and 15(d) cannot occur. We also discard Figure 15(b) by
the same arguments presented in Subsection 6.2. So, there remains Fig-
ure 15(a) and we conclude that (x1, x2, x3) : A→R3 and (x1, x2, x3) : B→
R3 are both graphs.

Except for their boundaries, none of the graphs can intercept the
other. Otherwise, they would either be tangent, or we could make them
tangent by displacing both graphs in opposite directions along Ox2. This
would contradict the Maximum Principle for Minimal Surfaces.

Therefore, both graphs intersect only at their coinciding U -curves, and
what we have is an embedded double-piece of minimal surface contained
in a wedge of R3. Its angle is 2π/k, and except for the U -curve, the
double-piece has its rays and reflectional symmetry curves on the faces
of the wedge. The whole ST2k is then generated by successive rotations
around the rays and reflections on the symmetry curves. Therefore, it
has no self-intersections. Since X is proper, then it is an embedding.
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13565-905 São Carlos, SP

Brazil
E-mail address: alvaro@dm.ufscar.br

E-mail address: lobos@dm.ufscar.br

V. Ramos Batista:
CMCC, UFABC

Rua Santa Adélia 166, Bl.B
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