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Abstract—The International Electrotechnical Commission
(IEC) standards characterize the waveform distortions in power
systems with the amplitudes of harmonic and interharmonic
groups and subgroups. These groups/subgroups utilize the wave-
form spectral components obtained from a fixed frequency-
resolution discrete Fourier transform (DFT). Using the IEC
standards allows for a compromise among the different goals,
such as the needs for accuracy, simplification, and unification. In
some cases, however, the power-system waveforms are charac-
terized by spectral components that the DFT cannot capture
with enough accuracy due to the fixed frequency resolution
and/or the spectral leakage phenomenon. This paper investigates
the possibility of a group/subgroup evaluation using the fol-
lowing advanced spectrum estimation methods: adaptive Prony,
estimation of signal parameters via rotational invariance tech-
niques, and root MUltiple-SIgnal Classification (MUSIC). These
adaptive methods use variable lengths of time windows of analysis
to ensure the best fit of the waveforms; they are not characterized
by the fixed frequency resolution and do not suffer from the
spectral leakage phenomenon. This paper also presents the results
of the applications of these methods to three test waveforms, to
current and voltage waveforms obtained from simulations of a
real dc arc-furnace plant, and to waveforms measured at the
point of common coupling of the low-voltage network supplying a
high-performance laser printer.

Index Terms—DC arc furnaces, discrete Fourier transform
(DFT), estimation of signal parameters via the rotational invari-
ance techniques (ESPRIT) method, Prony method, root MUltiple-
SIgnal Classification (MUSIC) method, spectrum estimation,
subspace methods, waveform-distortion analysis.

I. INTRODUCTION

THE QUALITY of voltage waveforms is an important

issue for power-system utilities, electric-energy users, and

manufacturers of electronic equipment. The main reasons for

this are the increasing number of power-quality (PQ) problems

linked to modern electronic devices, the susceptibility of loads

to these problems, and the new liberalized competitive markets

where electric disturbances can have significant economic con-

sequences. Among the possible PQ disturbances, the prolifera-
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tion of the nonlinear loads connected to the power systems has

triggered the most concern for waveform distortions.

It is commonly known that several indices have been used

to characterize waveform distortions. They generally refer to

periodic signals, which allow for an “exact” definition of har-

monic components and require only a single numerical value

to characterize the disturbances. However, when the spectral

components are time varying in amplitude, and/or in frequency,

as in the case of nonstationary signals, a misleading use of the

term “harmonic” can arise. Because of this, several numerical

values are needed to characterize the time-varying nature of

each spectral component of the signal [1], [2].

In addition, the standards and recommendations contain in-

dices to characterize waveform distortions in power systems,

as well as measurement methods and interpretation of results.

In particular, the International Electrotechnical Commission

(IEC) standards [3], [4] introduce specified signal processing

recommendations and definitions. For practical purposes, they

define the harmonic and interharmonic frequencies as integer

and noninteger multiples of the fundamental frequency, respec-

tively. With reference to a discrete Fourier transform (DFT),

using a time window of ten (50 Hz) or 12 (60 Hz) fundamental

periods, the IEC introduces the concept of harmonic and in-

terharmonic groups and subgroups. The waveform distortions

are then characterized by the amplitudes of these groupings

versus time.

The crucial drawback of the DFT method is that the length

of the window is related to the frequency resolution. Moreover,

to ensure the accuracy of the DFT, the sampling interval of

analysis should be an exact integer multiple of the waveform

fundamental period [5].

In this paper, we propose to estimate the IEC groups and

subgroups with some advanced spectrum estimation methods

based on the Prony, the estimation of signal parameters via rota-

tional invariance techniques (ESPRIT), and the root MUltiple-

SIgnal Classification (MUSIC) parametric methods [6]–[11].

The Prony method approximates the sampled data with a linear

combination of exponentials. It has a close relationship with

the least squares linear prediction algorithms used for auto re-

gressive and auto regressive moving average parameter estima-

tion. The ESPRIT and root-MUSIC methods are based on the

linear algebraic concepts of subspaces and have therefore been

called as the “subspace methods.” The model of the signal, in

this case, is a sum of sinusoids in the background of noise of a

known covariance function.

All of the considered parametric methods use signal models

in which the time-window length of analysis is unknown.
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Bracale et al. [7] propose an adaptive technique that was

successfully applied to the Prony method. This technique al-

lows us to evaluate the time-window length of analysis, ensur-

ing the best fit of the signal variations. In this paper, the adaptive

technique proposed in [7] is applied to the ESPRIT and root-

MUSIC methods to obtain the adaptive ESPRIT and adaptive

root-MUSIC methods, respectively.

The novelty of the proposed approach lies in replacing

the DFT with advanced spectrum estimation methods, which

gives more accurate results when analyzing strongly distorted

waveforms with nonstationary behavior. Other approaches exist

in the literature, which aim to avoid or diminish the inherent

drawbacks of the DFT (e.g., wavelets, filters, or windowing

techniques). Recently, significant improvements have also been

proposed in [12]–[14].

In particular, the approach presented in this paper demon-

strates significant advantages in terms of waveform approxima-

tion and has been evaluated on test waveforms, on waveforms

obtained from simulations of a real dc arc-furnace plant, and on

waveforms measured at the point of common coupling (PCC)

of the low-voltage (LV) network supplying a high-performance

laser printer.

The proposed adaptive Prony, ESPRIT, and root-MUSIC

methods have the following features.

1) The time windows of analysis can have variable lengths,

ensuring the best fit of the time-varying waveforms.

2) The time-window length does not constrain the frequency

resolution.

3) They do not suffer from the spectral leakage phenomenon.

This paper is organized such that the definitions of the IEC

groups and subgroups are briefly recalled. Then, the proposed

adaptive Prony, ESPRIT, and root-MUSIC methods are de-

scribed. Finally, the results of the numerical applications are

reported and discussed.

This paper is an extended version of the paper [15] presented

at the 2006 Instrumentation and Measurement Technology

Conference.

II. PROPOSED APPROACH

The adaptive Prony, ESPRIT, and root-MUSIC methods (for

the descriptions of the methods, see Sections II-A–C, respec-

tively) are compared with the DFT on the basis of the values of

the IEC harmonic and interharmonic groups/subgroups (Fig. 1).

As commonly known [3], the amplitudes of the IEC har-

monic and interharmonic subgroups Gsg,n and Cisg,n can be

evaluated, respectively, as

G2
sg,n =

1
∑

k=−1

C2
10n+k

C2
isg,n =

8
∑

k=2

C2
10n+k (1)

where C10n+k refers to the spectral components (rms value)

of the DFT output, using a window width of ten fundamental

periods (as in the case of a 50-Hz system, which is used in this

paper).

The amplitudes of the harmonic and interharmonic groups

Gg−n and Cig−n can be evaluated, respectively, as

G2
g,n =

C2
10n−5

2
+

4
∑

k=−4

C2
10n+k +

C2
10n+5

2

C2
ig,n =

9
∑

k=1

C2
10n+k (2)

where C10n+k denotes the aforementioned spectral components

(rms value) of the DFT output.

Finally, the results are smoothed over 15 intervals of ten fun-

damental periods. In other words, the results are smoothed over

the entire interval of several very short time measurements [4].

In the next section, the adaptive Prony, ESPRIT, and root-

MUSIC methods are presented (Sections II-A–C, respectively).

Then, we show how the relationship between (1) and (2)

should be modified in the framework of the proposed methods

(Sections II-D and E).

A. Adaptive Prony Method

Let us consider a time-window length including N samples

[x1 x2 · · · xN ] of the investigated waveform; the Prony method

approximates each sample using the following linear combina-

tion of M exponential functions:

x̂(tn) =
M
∑

k=1

Ake
(αk+jωk)(n−1)Ts+jφk

k (3)

where n = 1, 2, . . . , N , Ts is the sampling period, Ak is the

amplitude, αk is the damping factor, ωk is the angular velocity,

φk is the initial phase, and k is the exponential code.

The Toeplitz matrix created from the samples makes it possi-

ble to determine the vector of coefficients a of the characteristic

polynomial

zM + a1z
M−1 + · · · + aM−1z + aM = 0. (4)

The roots of the characteristic polynomial define the

Vandermonde matrix

Z =











z
0
1 · · · z

0
M−1 z

0
M

z
1
1 · · · z

1
M−1 z

1
M

...
...

...
...

z
M−1
1 · · · z

M−1
M−1 z

M−1
M











. (5)

The vector of complex values H can be calculated from

Z · H = X (6)

where

X = [x1 x2 · · · xM ].

The parameters of the exponential components for k =
1, 2, . . . , M can be calculated using the following rela-

tions: Ak = |hk|, αk =fs · ln |zk|, ωk =fs · arg(zk), and φk =
arg(hk), where fs is the sampling frequency.
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Fig. 1. IEC harmonic ↑ and interharmonic ↓ groupings. (a) Harmonic groups, (b) interharmonic groups, and (c) harmonic and interharmonic subgroups.

The adaptive Prony method is a modified version of the

Prony method proposed in [7]. The basic idea of the adaptive

Prony method consists of applying the Prony method to a

number of “short contiguous time windows” inside the ten

fundamental periods. The lengths of these short time win-

dows are variable; this variability ensures the best fit of the

signal variations along the ten fundamental periods of the

waveform.

Next, we present the adaptive technique proposed in [7].

Let us consider the signal x(t) and the L samples of the

generic jth short time window, which are obtained using the

sampling frequency fs = 1/Ts. For each sample, the following

estimation error can be introduced:

en = |x̂(tn) − x(tn)| (7)

where tn = nTs(n = 1, 2, 3, . . . , L), and x̂(tn) is given by (3).

Applying (3) for all L samples, the following mean-square

relative error can be defined:

ε2
curr(j) =

1

L

L
∑

n=1

|x̂(tn) − x(tn)|2

x(tn)2
. (8)
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This mean-square relative error gives a measure of the fi-

delity of the model considered. By defining a threshold ε2
thr (an

acceptable mean-square relative error), it is possible to choose

a length for the short time window (and then a subset of the

data segment length), ensuring a satisfactory approximation

(ε2
curr ≤ ε2

thr).
In practice, the adaptive technique applies the following

iterative algorithm inside the signal x(t) of duration Tobs.

1) Select a starting short-time-window length Tmin.

2) Apply the Prony method to the samples in the short

time window to obtain the model parameters (amplitudes,

damping factors, frequencies, and initial phases of the

Prony exponentials).

3) Use the exponentials obtained in step 2) to calculate ε2
curr

with (8).

4) Compare ε2
curr with the threshold ε2

thr, and observe the

following.

a) If ε2
curr ≤ ε2

thr, store the Prony-model exponential

parameters, and increase the short-time-window width

(and then the subset of the data segment) until ε2
curr ≤

ε2
thr and tf ≤ Tobs, and then, go to step 5).

b) If ε2
curr is greater than the threshold ε2

thr, increase the

short-time-window width, and then, go to step 6).

5) Store the short-time spectral components, and select a

new starting short-time-window width.

6) Compare tf with Tobs. If tf is less than or equal to Tobs, go

to step 2). If tf is greater than Tobs, then store the spectral

components for all the short contiguous time windows,

and stop the algorithm.

It should be noted that, in step 4a), the short-time-window

length is increased until the condition ε2
curr ≤ ε2

thr is satisfied;

the Prony-model parameters remain fixed at the values that

satisfy the criterion for the first time. In this way, a nonnegli-

gible reduction of the computational efforts arises, mainly in

the presence of slight time-varying waveforms.

Also note that, for the model-parameter calculation in each

short time window in step 2), the number of components M
has to be selected since this number is an input parameter

for the model reported in (3). As shown in [5] and [6],

choosing the number of components is a well-known problem

in the field of signal processing. In [8], several criteria are

compared, such as the final prediction error, the Akaike’s

information criterion, the minimum description-length crite-

rion, the autoregressive transfer criterion, and a criterion based

on the eigendecomposition of the sample autocorrelation ma-

trix. In [8], the MDL criterion is shown as an appropriate

method to evaluate the optimal number of components in

the case of power-system waveform distortions. This method

is based on the selection of the M value corresponding to

the minimum of the MDL function, which is defined as

follows:

MDL(M) = N ln
(

σ̂2
M

)

+ M ln(N) (9)

where N is the number of time-window samples, and σ̂2
M is the

estimated variance of the square prediction error.

B. Adaptive ESPRIT Method

The original ESPRIT algorithm [5] is based on naturally

existing shift invariance between the discrete time series, which

leads to rotational invariance between the corresponding signal

subspaces. The assumed signal model is as follows:

x̂(n) =

M
∑

k=1

Ake
(jωkn)
k + w(n) (10)

where w(n) represents the additive noise. The eigenvectors U

of the autocorrelation matrix of the signal define two subspaces

(signal and noise subspaces) by using two selector matrices Γ1

and Γ2 such that

S1 = Γ1U S2 = Γ2U. (11)

The rotational invariance between both subspaces leads to the

equation

S1 = ΦS2 (12)

where

Φ =









ejω1 0 · · · 0
0 ejω2 · · · 0
...

...
. . .

...

0 0 · · · ejωM









. (13)

The matrix Φ contains all information about the frequen-

cies of M components. Additionally, the total least squares

approach assumes that both estimated matrices S can contain

errors and also finds the matrix Φ as a minimization of the

Frobenius norm of the error matrix. The amplitudes of the

components can be found in a similar way as the Prony method

by using (10).

In this paper, the adaptive technique proposed in [7] has

also been applied to the ESPRIT method. In order to obtain

the adaptive ESPRIT method, this technique is applied to a

number of “short contiguous time windows.” Since the ESPRIT

method does not provide any phase estimation of the spectral

component, the short contiguous time windows are obtained

by minimizing the error between the actual waveform energy

content evaluated in the time domain and the estimated wave-

form energy content obtained using the spectral components

in the frequency domain. This approach results in the adaptive

ESPRIT method.

C. Adaptive Root-MUSIC Method

The MUSIC method [5] involves the projection of the signal

vector onto the entire noise subspace. The matrices of the

eigenvectors of the autocorrelation matrix Rx can be divided

into signal and noise matrices

Esignal = � e1 e2 · · · ep � (14)

Enoise = � ep+1 ep+2 · · · eM � . (15)
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Similarly, two matrices of eigenvalues Λsignal and Λnoise can

be built. It is possible then to rewrite Rx as

Rx = EsignalΛsignalE
∗T
signal + EnoiseΛnoiseE

∗T
noise. (16)

The MUSIC method uses only the noise subspace for the

estimation of the frequencies of the sinusoidal component,

whereas the ESPRIT method uses only the signal subspace.

Enoise can be used to form the polynomial

P̂−1(z) =
M
∑

i=p+1

Ei(z)E∗
i (1/z) (17)

which has p double roots lying on the unit circle. These roots

also correspond to the frequencies of the signal components.

This technique for finding the frequencies is therefore called

the root-MUSIC method.

After the frequencies are calculated, the powers of each

component can be estimated from the eigenvalues and the

eigenvectors of the correlation matrix [5].

As with the ESPRIT method, the root-MUSIC method does

not provide any phase estimation of the spectral component.

The most adequate “short contiguous time windows” are ob-

tained by minimizing the error between the actual waveform

energy content evaluated in the time domain and the estimated

waveform energy content obtained using the spectral compo-

nents in the frequency domain. This approach results in the

adaptive root-MUSIC method.

D. Calculation of the Short Harmonic and Interharmonic

Subgroup Amplitudes

All advanced methods recalled in the previous sections per-

mit the evaluation of the spectral components of the distorted

waveforms inside the short contiguous time windows. There-

fore, the need to define the corresponding “short-time harmonic

and interharmonic subgroups” arises. These can be defined

as the subgroups calculated for a short time window. With

reference to the jth short time window, they are given as

G2
ssg,n(j) =

Mnsg
∑

k=1

C2
k(j)

C2
issg,n(j) =

Mnisg
∑

k=1

C2
k(j) (18)

where Ck is the amplitude (rms value) of the spectral compo-

nents, Mnsg is the number of spectral components inside the

frequency interval [nf1 − 7.5, nf1 + 7.5] Hz, and Mnisg is the

number of spectral components inside the frequency interval

[nf1 + 7.5, (n + 1)f1 − 7.5] Hz. With reference to the IEC

intervals, the need to enlarge the frequency ranges for both

harmonic and interharmonic grouping evaluations is derived

from the absence of the DFT fixed frequency resolution in the

advanced method applications.

E. Calculation of the Harmonic and Interharmonic

Subgroup Amplitudes

Once the short-time harmonic and interharmonic subgroups

for all windows inside an interval of ten fundamental periods

have been determined, the harmonic and interharmonic sub-

group amplitudes can be calculated by averaging all of the

aforementioned short harmonic and interharmonic subgroup

amplitudes. This results in the equation

G2
sg,n =

Nw
∑

j=1

NW (j)G2
ssg,n(j)

NW

C2
isg,n =

Nw
∑

j=1

NW (j)C2
issg,n(j)

NW

(19)

where NW is the number of samples inside the ten fundamental

periods, and NW (j) is the number of samples in the jth short

contiguous time window.

Finally, the results can be averaged over 15 intervals of the

ten fundamental periods in order to obtain the results referred

to the very short time measurements.

III. NUMERICAL APPLICATIONS

Several numerical experiments were performed. We report

the results obtained from the analysis of three sample wave-

forms, the current and voltage waveforms at the medium-

voltage (MV) busbar using a simulated dc arc-furnace plant

[16], and the voltage waveform measured at the PCC of the LV

network supplying a high-performance laser printer [14].

In the next three sections, the IEC method, adaptive root-

MUSIC method, adaptive ESPRIT method, and adaptive Prony

method are referred to as the IECM, ARM, AEM, and APM,

respectively. In order to compare the distortion estimation of

the proposed methods with the IECM, the harmonic and inter-

harmonic subgroups were evaluated by applying the definitions

reported in Sections II-D and E.

A. Test Waveforms

The sampling frequency for all experiments and methods was

5 kHz. The window width was Tw = 200.00 ms for the IECM.

The acceptable mean-square relative error for all the adaptive

methods was ε = 1.0 · 10−6.

Case Study 1: The considered signal is constituted by a tone

of amplitude of 1 pu at a fundamental frequency of 50 Hz and

an interharmonic tone of amplitude of 0.01 pu with a frequency

varying between 58 and 65 Hz (in increments of 0.5 Hz) over

15 experiments.

Fig. 2 shows the IECM results in terms of the magnitude

error for the interharmonic subgroup Cisg,1 versus the fre-

quency of the interharmonic component in the 15 experiments.

The absolute errors of the IECM reach more than 5% under

the worst conditions when the interharmonic tone is closest

to the first harmonic-subgroup frequency interval. The error

is null in the experiments characterized by interharmonic
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Fig. 2. Case study 1. Interharmonic subgroup Cisg,1 magnitude error (in
percentage) versus interharmonic frequency obtained using the IECM (–•–).

Fig. 3. Case study 1. Interharmonic subgroup Cisg,1 magnitude error (in
percentage) versus interharmonic frequency obtained using the APM (–◦–),
ARM (–x–), and AEM (–+–).

frequencies of 60 and 65 Hz, where the interharmonic is syn-

chronized with Tw.

Fig. 3 shows the results, which are obtained by applying the

proposed adaptive methods, in terms of the magnitude error

for the interharmonic subgroup Cisg,1 versus the frequency of

the interharmonic component. In general, all of the adaptive

methods provide a better approximation of the interharmonic

subgroup Cisg,1 compared with those obtained by the IECM.

All adaptive methods provide a spectrum with only two

components for all 15 experiments, showing the absence of

spectral leakage phenomenon. The errors of APM and AEM do

not reach 2.0 × 10−5%, and the APM generally gives the best

performance. It should be noted that the results for the AEM

and APM are not influenced by the frequency position of the

interharmonic tone. Only ARM suffers from the proximity of

the interharmonic tone to the first harmonic subgroup (Cisg,1);
it gives varying errors in the interharmonic-tone amplitude

Fig. 4. Case study 2. Interharmonic subgroup Cisg,1 magnitude error (in
percentage) versus interharmonic frequency obtained using the IECM (–•–).

estimation, causing varying errors in the subgroup Cisg,1 eval-

uation. Nonetheless, the ARM error is lower than 0.8%.

Case Study 2: In the synchronization of the window width

with the actual system fundamental frequency, a 0.03% max-

imum error in the window duration is permitted by the IEC

standards [3]. Therefore, the presence of a fundamental tone

frequency at 50.015 Hz introduces a further kind of desynchro-

nization because the window width adopted for the IEC method

remains equal to 200.00 ms.

In this case, the second signal considered is the same as

in Section III-A1, except for the fundamental tone frequency,

which is at 50.015 Hz.

Fig. 4 shows the IECM results in terms of the magni-

tude error for the interharmonic subgroup Cisg,1 versus the

frequency of the interharmonic component in the 15 experi-

ments. Comparing Figs. 2 and 4, we observe that the errors

of the IECM increase, reaching values over −8.5% due to

DFT spectral leakage. In this case, the desynchronization with

the fundamental causes the presence of some high-amplitude

“false” interharmonics in the DFT spectrum; the interference

between these false interharmonics and the interharmonic tone

of 0.01 pu changes with the frequency position of this last tone,

causing changing subgroup Cisg,1 errors in the 15 experiments

(Fig. 4).

Fig. 5 shows the results obtained by applying the proposed

adaptive methods in terms of the magnitude error for the

interharmonic subgroup Cisg,1 versus the frequency of the inter-

harmonic component. All adaptive methods provide a spectrum

with only two components. Comparing Figs. 3 and 5, it is

possible to observe that, while the performances of APM and

AEM remain very good with no reduction of approximation,

the ARM errors increase, reaching a maximum value of 1.7%.

Moreover, the ARM gives errors in the interharmonic am-

plitude estimation, which are more stable than those resulting

in Section III-A1; thus, the subgroup Cisg,1 errors slightly

decrease, increasing the interharmonic-tone frequency.

Case Study 3: The signal considered is constituted by a tone

of amplitude of 1 pu at a fundamental frequency of 50.015 Hz
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Fig. 5. Case study 2. Interharmonic subgroup Cisg,1 magnitude error (in
percentage) versus interharmonic frequency obtained using the APM (–◦–),
ARM (–x–), and AEM (–+–).

Fig. 6. Case study 3. Interharmonic subgroup Cisg,1 magnitude error (in
percentage) versus interharmonic frequency obtained using the IECM (–•–).

and by a couple of interharmonic tones of amplitude of

0.01 pu located at symmetrical frequency positions from 60 Hz.

The first starts from 60 Hz and varies its frequency to 65 Hz by

increments of 0.5 Hz, whereas the second starts from 60 Hz and

varies its frequency to 55 Hz by decrements of 0.5 Hz. Eleven

experiments were performed.

Figs. 6 and 7 show the results obtained using the IECM and

adaptive methods, respectively, in terms of the magnitude error

for the interharmonic subgroup Cisg,1 versus the absolute value

of the distance of each interharmonic component from 60 Hz in

the 11 experiments.

From the analysis of Fig. 6, it should be noted that, in this

case, the IECM greatly suffers from the interference problems

between the two interharmonics due to their proximity. The

IECM captures the spectral leakage due to the desynchroniza-

tion of the fundamental and the interharmonics that are adjacent

to the first interharmonic subgroup, which gives misleading

results with errors greater than 40%.

Fig. 7. Case study 3. Interharmonic subgroup Cisg,1 magnitude error (in
percentage) versus interharmonic frequency obtained using the APM (–◦–),
ARM (–x–), and AEM (–+–).

Fig. 8. Scheme of the dc arc furnace.

Once again, the proposed methods provide a spectrum with

only three components for all 11 experiments, confirming

the absence of spectral leakage phenomenon. By comparing

Figs. 5 and 7, note that the ARM increases in errors. Once

again, the ARM gives varying errors in the interharmonic

amplitude estimation, in particular, these errors cause varying

Cisg,1 magnitude errors, reaching its maximum error when the

two interharmonic tones are closest (interharmonic distance

of 0.5 Hz).

In contrast, the APM and AEM still give good results even if

with a slight reduction of accuracy with respect to the previous

case studies. In particular, for this example waveform, the APM

gives the best approximation, ensuring an error that does not

reach 2.0 × 10−5%.

B. DC Arc-Furnace Waveforms

The next investigated waveforms originate from the simula-

tion of a real dc arc-furnace plant, the scheme of which is shown

in Fig. 8. To simulate the dc arc behavior, a chaotic model has

been applied [16].

In the dc arc furnaces, the presence of the ac/dc static

converter and the random motion of the electric arc, whose
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TABLE I
DC ARC-FURNACE CURRENT WAVEFORM: HARMONIC

SUBGROUP AMPLITUDES EVALUATED OVER 3-s
INTERVAL USING THE DIFFERENT TECHNIQUES

TABLE II
DC ARC-FURNACE VOLTAGE WAVEFORM: HARMONIC

SUBGROUP AMPLITUDES EVALUATED OVER 3-s
INTERVAL USING THE DIFFERENT TECHNIQUES

nonlinear and time-varying nature is known, are responsible

for the dangerous perturbations, in particular the waveform

distortions and the voltage fluctuations, which are time varying.

To compare the different adaptive techniques (the ARM,

AEM, and APM) with the IEC method, the current and voltage

waveforms at the MV busbar of the dc arc furnace are analyzed.

For a better estimation of the spectral components, it was

experimented to be useful the preprocessing of the data with

proper filters.

The following filters have been applied:

1) a fourth-order band-stop Butterworth IIR filter that cuts

out the main (50 Hz) component;

2) fourth-order bandpass Butterworth IIR filters centered

at 550 and 650 Hz for the 11th and 13th harmonic

subgroups, respectively.

The most significant harmonic subgroups of the current and

voltage waveforms are reported in Tables I and II, respectively.

The most significant interharmonic subgroups of the current

and voltage waveforms are reported in Tables III and IV,

respectively.

From the analysis of these tables, it clearly appears that,

with reference to the current and voltage harmonic subgroup

amplitudes, Gsg,11 and Gsg,13 (Tables I and II), ARM, APM,

and AEM give higher values than those obtained using the

IECM. Moreover, the IECM gives values of the current and

voltage harmonic subgroups Gsg,12 that are significantly greater

than those obtained with any of the adaptive techniques.

The IECM lower values for the harmonic subgroups Gsg,11

and Gsg,13, as well as the IECM higher values for the harmonic

subgroup Gsg,12, are due to the spectral leakage present in

TABLE III
DC ARC-FURNACE CURRENT WAVEFORM: INTERHARMONIC

SUBGROUP AMPLITUDES EVALUATED OVER 3-s
INTERVAL USING THE DIFFERENT TECHNIQUES

TABLE IV
DC ARC-FURNACE VOLTAGE WAVEFORM: INTERHARMONIC

SUBGROUP AMPLITUDES EVALUATED OVER 3-s
INTERVAL USING THE DIFFERENT TECHNIQUES

the IECM algorithm. In fact, part of the energy content of the

11th and 13th harmonics is dispersed among the contiguous

harmonic and interharmonic subgroups.

The proposed methods do not suffer at all from this prob-

lem. With reference to the current and voltage interharmonic

subgroup amplitudes (Tables III and IV, respectively), all of

the adaptive methods (the ARM, AEM, and APM) give lower

values than those obtained by the IECM. Moreover, as ex-

pected, the results obtained using the subspace-based methods

(the ARM and AEM) are similar in most cases.

Tables III and IV show that the IECM interharmonic sub-

groups have larger values than those obtained using the adaptive

methods, confirming the absence of spectral leakage caused by

the 11th and 13th harmonics.

The different processing techniques were also compared with

an additional method based on the extension of IEC groupings

to the high-resolution DFT spectral analysis performed on 3 s

(IEC3sM) [11]. As an example, Fig. 9 compares the amplitudes

of some harmonic and interharmonic subgroups obtained using

the ARM, AEM, APM, IECM, and IEC3sM for the current

analysis. From this figure, it appears that the problem of spectral

leakage can partially be reduced by using the IEC3sM and that

the results of the IEC3sM are closer to those obtained using the

proposed methods.

C. Laser-Printer-Measured Waveform

The current and voltage waveforms are measured at the PCC

of the LV network supplying a high-performance laser printer.

The laser printer is a harmonic and an interharmonic source due

to its time-varying absorption, which is asynchronous with the

power-system frequency during the printing stage.
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Fig. 9. DC arc-furnace current waveform. (a) Some harmonic and (b) inter-
harmonic subgroup amplitudes.

TABLE V
LASER-PRINTER VOLTAGE WAVEFORM: HARMONIC

SUBGROUP AMPLITUDES EVALUATED OVER 3-s
INTERVAL USING THE DIFFERENT TECHNIQUES

The measurement system is composed of a PXI instrumen-

tation system produced by the National Instruments (model

PXI-1020), which is equipped with a data acquisition board

(model NI PXI-4472) having eight channels and 24-b resolu-

tion. The current and voltage transducers are a LEM CT25-T

and a LEM CV 3-1000, respectively.

In order to compare the different adaptive techniques with

the IEC method, the voltage waveform is analyzed. Tables V

TABLE VI
LASER-PRINTER VOLTAGE WAVEFORM: INTERHARMONIC

SUBGROUP AMPLITUDES EVALUATED OVER 3-s
INTERVAL USING THE DIFFERENT TECHNIQUES

and VI report the most significant harmonic and interharmonic

subgroups of the voltage waveform. The analysis of Tables V

and VI confirms the same conclusions of the previous case

studies; in particular, it should be noted that, with reference to

the interharmonic subgroup amplitudes (Table VI), the IECM

introduces subgroups (Cisg4 and Cisg6) that are null for the

adaptive methods.

IV. CONCLUSION

This paper has proposed selected advanced spectrum estima-

tion methods for the evaluation of harmonic and interharmonic

groupings.

The techniques are based on the application of Prony,

ESPRIT, and root-MUSIC methods to a number of short

contiguous variable time windows inside the ten fundamental

periods (imposed by the IEC standards as time intervals to

which the groupings have to be referred). The number and the

duration of these short windows were obtained by applying an

adaptive algorithm based on the minimization of the waveform

estimation error.

The application of the proposed techniques to test the de-

fined waveforms, the waveforms derived from simulations of

an actual plant, and the measured waveforms supplying a

high-performance laser printer leads to the following main

outcomes.

1) Even if characterized by simplicity, the IEC standards

may suffer inaccuracy problems under conditions such as

those characterized by fundamental and harmonic desyn-

chronization within the time-window width.

2) The APM, AEM, and ARM methods do not suffer partic-

ular problems due to the spectral leakage phenomenon,

even in very critical conditions, such as those character-

ized by harmonics and interharmonics whose amplitudes

and/or frequencies are time varying.

3) The APM and AEM methods provide very good ap-

proximations for harmonic and interharmonic subgroup

estimation and do not introduce spurious subgroups; the

ARM has the same accuracy, except in the case of test

waveforms with interharmonics.

4) The APM generally provides the best performance.

Eventually, even if the use of the IEC standard technique

represents a compromise to achieve different goals, such as
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the needs for accuracy, simplification, and unification, the

proposed approach is particularly useful for its very high

precision, specifically in the case of particularly complex

signals. This high precision has also been shown in [17],

where the advanced methods (in particular the adaptive Prony

method) were compared with some DFT advanced meth-

ods that improved DFT measurement performance by reduc-

ing sensitivity to desynchronization problems. Moreover, in

[17], it has been shown that the computational cost of these

proposed methods is certainly higher than the DFT-based

methods.
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