82 research outputs found

    Development of an approximate method for quantum optical models and their pseudo-Hermicity

    Full text link
    An approximate method is suggested to obtain analytical expressions for the eigenvalues and eigenfunctions of the some quantum optical models. The method is based on the Lie-type transformation of the Hamiltonians. In a particular case it is demonstrated that E×ϵE\times \epsilon Jahn-Teller Hamiltonian can easily be solved within the framework of the suggested approximation. The method presented here is conceptually simple and can easily be extended to the other quantum optical models. We also show that for a purely imaginary coupling the E×ϵE\times \epsilon Hamiltonian becomes non-Hermitian but Pσ0P\sigma _{0}-symmetric. Possible generalization of this approach is outlined.Comment: Paper prepared fo the "3rd International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics" June 2005 Istanbul. To be published in Czechoslovak Journal of Physic

    Reduction of Quantum Phase Fluctuations in Intermediate States

    Full text link
    Recently we have shown that the reduction of the Carruthers-Nieto symmetric quantum phase fluctuation parameter (U) with respect to its coherent state value corresponds to an antibunched state, but the converse is not true. Consequently reduction of U is a stronger criterion of nonclassicality than the lowest order antibunching. Here we have studied the possibilities of reduction of UU in intermediate states by using the Barnett Pegg formalism. We have shown that the reduction of phase fluctuation parameter U can be seen in different intermediate states, such as binomial state, generalized binomial state, hypergeometric state, negative binomial state, and photon added coherent state. It is also shown that the depth of nonclassicality can be controlled by various parameters related to intermediate states. Further, we have provided specific examples of antibunched states, for which UU is greater than its poissonian state value.Comment: 10 pages, 5 figure

    Постать Тараса Шевченка в рецепції Ліни Костенко

    Get PDF
    У статті розглядається поетика творення Ліною Костенко образу Кобзаря крізь призму власного "я", через пережиті відчуття поета-шістдесятника, що своєю проекцією нагадують душевні терзання великого поета.В статье рассмотрена поэтика создания Линой Костенко образа Тараса Шевченко сквозь призму собственного "я", через пережитые ощущения поэта-шестидесятника, своей проекцией напоминающие душевные терзания великого поэта.The article deals with the problem of the poetics creation by Lina Kostenko Taras Shevchenko’ image through a prism her own mind, through sensations of the poet-sixtier, by the projection reminding sincere torments the great poet is considered

    Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets

    Get PDF
    Solution-processed quantum wells, also known as colloidal nanoplatelets (NPLs), are emerging as promising materials for colloidal optoelectronics. In this work, we report the synthesis and characterization of CdSe/CdTe core/crown NPLs exhibiting a Type-II electronic structure and Type-II specific optical properties. Here, based on a core-seeded approach, the CdSe/CdTe core/crown NPLs were synthesized with well-controlled CdTe crown coatings. Uniform and epitaxial growth of CdTe crown region was verified by using structural characterization techniques including transmission electron microscopy (TEM) with quantitative EDX analysis and X-ray diffraction (XRD). Also the optical properties were systematically studied in these Type-II NPLs that reveal strongly red-shifted photoluminescence (up to similar to 150 nm) along with 2 orders of magnitude longer fluorescence lifetimes (up to 190 ns) compared to the Type-I NPLs owing to spatially indirect excitons at the Type-II interface between the CdSe core and the CdTe crown regions. Photoluminescence excitation spectroscopy confirms that this strongly red-shifted emission actually arises from the CdSe/CdTe NPLs. In addition, temperature-dependent time-resolved fluorescence spectroscopy was performed to reveal the temperature-dependent fluorescence decay kinetics of the Type-II NPLs exhibiting interesting behavior. Also, water-soluble Type-II NPLs were achieved via ligand exchange of the CdSe/CdTe core/crown NPLs by using 3-mercaptopropionic acid (MPA), which allows for enhanced charge extraction efficiency owing to their shorter chain length and enables high quality film formation by layer-by-layer (LBL) assembly. With all of these appealing properties, the CdSe/CdTe core/crown heterostructures having Type-II electronic structure presented here are highly promising for light-harvesting applications

    Folding Circular Permutants of IL-1β: Route Selection Driven by Functional Frustration

    Get PDF
    Interleukin-1β (IL-1β) is the cytokine crucial to inflammatory and immune response. Two dominant routes are populated in the folding to native structure. These distinct routes are a result of the competition between early packing of the functional loops versus closure of the β-barrel to achieve efficient folding and have been observed both experimentally and computationally. Kinetic experiments on the WT protein established that the dominant route is characterized by early packing of geometrically frustrated functional loops. However, deletion of one of the functional loops, the β-bulge, switches the dominant route to an alternative, yet, as accessible, route, where the termini necessary for barrel closure form first. Here, we explore the effect of circular permutation of the WT sequence on the observed folding landscape with a combination of kinetic and thermodynamic experiments. Our experiments show that while the rate of formation of permutant protein is always slower than that observed for the WT sequence, the region of initial nucleation for all permutants is similar to that observed for the WT protein and occurs within a similar timescale. That is, even permutants with significant sequence rearrangement in which the functional-nucleus is placed at opposing ends of the polypeptide chain, fold by the dominant WT “functional loop-packing route”, despite the entropic cost of having to fold the N- and C- termini early. Taken together, our results indicate that the early packing of the functional loops dominates the folding landscape in active proteins, and, despite the entropic penalty of coalescing the termini early, these proteins will populate an entropically unfavorable route in order to conserve function. More generally, circular permutation can elucidate the influence of local energetic stabilization of functional regions within a protein, where topological complexity creates a mismatch between energetics and topology in active proteins

    Structural Elements Regulating Amyloidogenesis: A Cholinesterase Model System

    Get PDF
    Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE), AChE586-599, through the effect of single point mutations on β-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high β-strand propensity, for the conformational transition to β-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to β-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-π, SH-aromatic, metal chelation and polar-polar) would maintain the β-sheets together. We also propose that the stacking between the strands in the β-sheets along the fiber axis could be stabilized through π-π interactions and metal chelation. The dissection of the specific molecular recognition driving AChE586-599 amyloid assembly has provided further knowledge on such poorly understood and complicated process, which could be applied to protein folding and the targeting of amyloid diseases

    Enhanced Lifetime Of Excitons In Nonepitaxial Au/cds Core/shell Nanocrystals

    Get PDF
    The ability of metal nanoparticles to capture light through plasmon excitations offers an opportunity for enhancing the optical absorption of plasmon-coupled semiconductor materials via energy transfer. This process, however, requires that the semiconductor component is electrically insulated to prevent a backward charge flow into metal and interfacial states, which causes a premature dissociation of excitons. Here we demonstrate that such an energy exchange can be achieved on the nanoscale by using nonepitaxial Au/CdS core/shell nanocomposites. These materials are fabricated via a multistep cation exchange reaction, which decouples metal and semiconductor phases leading to fewer interfacial defects. Ultrafast transient absorption measurements confirm that the lifetime of excitons in the CdS shell (tau approximate to 300 ps) is much longer than lifetimes of excitons in conventional, reduction-grown Au/CdS heteronanostructures. As a result, the energy of metal nanoparticles can be efficiently utilized by the semiconductor component without undergoing significant nonradiative energy losses, an important property for catalytic or photovoltaic applications. The reduced rate of exciton dissociation in the CdS domain of Au/CdS nanocomposites was attributed to the nonepitaxial nature of Au/CdS interfaces associated with low defect density and a high potential barrier of the interstitial phase
    corecore