74 research outputs found

    Health and Pleasure in Consumers' Dietary Food Choices: Individual Differences in the Brain's Value System

    Get PDF
    Taking into account how people value the healthiness and tastiness of food at both the behavioral and brain levels may help to better understand and address overweight and obesity-related issues. Here, we investigate whether brain activity in those areas involved in self-control may increase significantly when individuals with a high body-mass index (BMI) focus their attention on the taste rather than on the health benefits related to healthy food choices. Under such conditions, BMI is positively correlated with both the neural responses to healthy food choices in those brain areas associated with gustation (insula), reward value (orbitofrontal cortex), and self-control (inferior frontal gyrus), and with the percent of healthy food choices. By contrast, when attention is directed towards health benefits, BMI is negatively correlated with neural activity in gustatory and reward-related brain areas (insula, inferior frontal operculum). Taken together, these findings suggest that those individuals with a high BMI do not necessarily have reduced capacities for self-control but that they may be facilitated by external cues that direct their attention toward the tastiness of healthy food. Thus, promoting the taste of healthy food in communication campaigns and/or food packaging may lead to more successful self-control and healthy food behaviors for consumers with a higher BMI, an issue which needs to be further researched

    The 5-HT2C receptor agonist meta-chlorophenylpiperazine (mCPP) reduces palatable food consumption and BOLD fMRI responses to food images in healthy female volunteers

    Get PDF
    RATIONALE: Brain 5-HT2C receptors form part of a neural network that controls eating behaviour. 5-HT2C receptor agonists decrease food intake by activating proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus, but recent research in rodents has suggested that 5-HT2C receptor agonists may also act via dopaminergic circuitry to reduce the rewarding value of food and other reinforcers. No mechanistic studies on the effects of 5-HT2C agonists on food intake in humans have been conducted to date. OBJECTIVES: The present study examined the effects of the 5-HT2C receptor agonist meta-chlorophenylpiperazine (mCPP) on food consumption, eating microstructure and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) responses to food pictures in healthy female volunteers. METHODS: In a double-blind, placebo-controlled, crossover design, participants were randomized immediately after screening to receive oral mCPP (30mg) in a single morning dose, or placebo, in a counterbalanced order. Test foods were served from a Universal Eating Monitor (UEM) that measured eating rate and fMRI BOLD signals to the sight of food and non-food images were recorded. RESULTS: mCPP decreased rated appetite and intake of a palatable snack eaten in the absence of hunger but had no significant effect on the consumption of a pasta lunch (although pasta eating rate was reduced). mCPP also decreased BOLD fMRI responses to the sight of food pictures in areas of reward-associated circuitry. A post hoc analysis identified individual variability in the response to mCPP (exploratory responder-non-responder analysis). Some participants did not reduce their cookie intake after treatment with mCPP and this lack of response was associated with enhanced ratings of cookie pleasantness and enhanced baseline BOLD responses to food images in key reward and appetite circuitry. CONCLUSIONS: These results suggest that 5-HT2C receptor activation in humans inhibits food reward-related responding and that further investigation of stratification of responding to mCPP and other 5-HT2C receptor agonists is warranted

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Battle of the primes - the effect and interplay of health and hedonic primes on food choice

    Get PDF
    People making food choices are often exposed to different cues that can activate relevant goals that influence the choice outcome. Hedonic goals are frequently primed by advertising while health policy enlists primes that activate health goals in the moment of food decision-making - e.g., healthy food labels. However, little is known about the effect of such goal-priming cues on the population level and how people respond when exposed to both types of primes simultaneously. The results of this study, based on a large, representative sample (N = 1200), show no effect of health-goal priming on healthy food choices. Being exposed to a sole hedonic prime, however, reduces healthy choices by 3%. This effect completely disappeared when both primes were presented at the same time. All effects remained insensitive to people's gender, hunger status, level of dietary restraint, and BMI. These findings cast doubt over the effectiveness of health goal primes as a tool to increase healthy food choices but suggest a protective effect against competing hedonic primes and could thereby prevent less healthy choices

    Identification and validation of WISP1 as an epigenetic regulator of metastasis in oral squamous cell carcinoma

    No full text
    Lymph node (LN) metastasis is the most important prognostic factor in oral squamous cell carcinoma (OSCC) patients. However, in approximately one third of OSCC patients nodal metastases remain undetected, and thus are not adequately treated. Therefore, clinical assessment of LN metastasis needs to be improved. The purpose of this study was to identify DNA methylation biomarkers to predict LN metastases in OSCC. Genome wide methylation assessment was performed on six OSCC with (N+) and six without LN metastases (N0). Differentially methylated sequences were selected based on the likelihood of differential methylation and validated using an independent OSCC cohort as well as OSCC from The Cancer Genome Atlas (TCGA). Expression of WISP1 using immunohistochemistry was analyzed on a large OSCC cohort (n = 5204). MethylCap-Seq analysis revealed 268 differentially methylated markers. WISP1 was the highest ranking annotated gene that showed hypomethylation in the N+ group. Bisulfite pyrosequencing confirmed significant hypomethylation within the WISP1 promoter region in N+ OSCC (P = 0.03) and showed an association between WISP1 hypomethylation and high WISP1 expression (P = 0.01). Both these results were confirmed using 148 OSCC retrieved from the TCGA database. In a large OSCC cohort, high WISP1 expression was associated with LN metastasis (P = 0.05), disease-specific survival (P = 0.022), and regional disease-free survival (P = 0.027). These data suggest that WISP1 expression is regulated by methylation and WISP1 hypomethylation contributes to LN metastasis in OSCC. WISP1 is a potential biomarker to predict the presence of LN metastases. (c) 2015 Wiley Periodicals, Inc
    • …
    corecore