3,283 research outputs found
Recommended from our members
Two Cheers For Diversity: An Experimental Study Of Micro-level Heterogeneity In Problemistic Search
In this paper, we argue for an expanded view of problemistic search. Recent behavioral theory research suggests that individual search preferences influence problemistic search. We draw on this to challenge the view of problemistic search as a centrally directed organizational process that proceeds sequentially from local to distant search. We argue that search activities in organizations are heterogeneous – some individuals will first engage in local search while others may move directly to distant search. We propose that problemistic search at the macroorganizational level is therefore the result of a mix of local and distant search activities at the micro-level that shifts towards distant search in response to negative performance evaluation. We test this idea in a laboratory experiment using a repetitive task and performance feedback
Magnetoplasmons in quantum rings
We have studied the structure and dipole charge density response of nanorings
as a function of the magnetic field using local-spin density functional theory.
Two small rings consisting of 12 and 22 electrons confined by a positively
charged background are used to represent the cases of a narrow and a wide ring.
The results are qualitatively compared with experimental data existing on
microrings and on antidots. A smaller ring containing 5 electrons is also
analyzed to allow for a closer comparison with a recent experiment on a two
electron quantum ring.Comment: Typeset using Revtex, 13 pages and 11 Postscript figure
Physics of Ultra-Peripheral Nuclear Collisions
Moving highly-charged ions carry strong electromagnetic fields that act as a
field of photons. In collisions at large impact parameters, hadronic
interactions are not possible, and the ions interact through photon-ion and
photon-photon collisions known as {\it ultra-peripheral collisions} (UPC).
Hadron colliders like the Relativistic Heavy Ion Collider (RHIC), the Tevatron
and the Large Hadron Collider (LHC) produce photonuclear and two-photon
interactions at luminosities and energies beyond that accessible elsewhere; the
LHC will reach a energy ten times that of the Hadron-Electron Ring
Accelerator (HERA). Reactions as diverse as the production of anti-hydrogen,
photoproduction of the , transmutation of lead into bismuth and
excitation of collective nuclear resonances have already been studied. At the
LHC, UPCs can study many types of `new physics.'Comment: 47 pages, to appear in Annual Review of Nuclear and Particle Scienc
Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements
In this work, the use of foam-like glass-ceramic scaffolds as trabecular coatings on ceramic prosthetic devices to enhance implant osteointegration is proposed. The feasibility of this innovative device was explored in a simplified, flat geometry: glass-ceramic scaffolds, prepared by polymeric sponge replication and mimicking the trabecular architecture of cancellous bone, were joined to alumina square substrates by a dense glass coating (interlayer). The role played by different formulations of starting glasses was examined, with particular care to the effect on the mechanical properties and bioactivity of the final coating. Microindentations at the coating/substrate interface and tensile tests were performed to evaluate the bonding strength between the sample's components. In vitro bioactive behaviour was assessed by soaking in simulated body fluid and evaluating the apatite formation on the surface and inside the pores of the trabecular coating. The concepts disclosed in the present study can have a significant impact in the field of implantable devices, suggesting a valuable alternative to traditional, often invasive bone-prosthesis fixatio
The gray matter volume of the amygdala is correlated with the perception of melodic intervals: a voxel-based morphometry study
Music is not simply a series of organized pitches, rhythms, and timbres, it is capable of evoking emotions. In the present study, voxel-based morphometry (VBM) was employed to explore the neural basis that may link music to emotion. To do this, we identified the neuroanatomical correlates of the ability to extract pitch interval size in a music segment (i.e., interval perception) in a large population of healthy young adults (N = 264). Behaviorally, we found that interval perception was correlated with daily emotional experiences, indicating the intrinsic link between music and emotion. Neurally, and as expected, we found that interval perception was positively correlated with the gray matter volume (GMV) of the bilateral temporal cortex. More important, a larger GMV of the bilateral amygdala was associated with better interval perception, suggesting that the amygdala, which is the neural substrate of emotional processing, is also involved in music processing. In sum, our study provides one of first neuroanatomical evidence on the association between the amygdala and music, which contributes to our understanding of exactly how music evokes emotional responses
Recommended from our members
Cosmogenic neutron production at the Sudbury Neutrino Observatory
Neutrons produced in nuclear interactions initiated by cosmic-ray muons present an irreducible background to many rare-event searches, even in detectors located deep underground. Models for the production of these neutrons have been tested against previous experimental data, but the extrapolation to deeper sites is not well understood. Here we report results from an analysis of cosmogenically produced neutrons at the Sudbury Neutrino Observatory. A specific set of observables are presented, which can be used to benchmark the validity of geant4 physics models. In addition, the cosmogenic neutron yield, in units of 10-4 cm2/(g·μ), is measured to be 7.28±0.09(stat)-1.12+1.59(syst) in pure heavy water and 7.30±0.07(stat)-1.02+1.40(syst) in NaCl-loaded heavy water. These results provide unique insights into this potential background source for experiments at SNOLAB
Recommended from our members
Divided attention selectively impairs memory for self-relevant information
Information that is relevant to oneself tends to be remembered more than information that relates to other people, but the role of attention in eliciting this "self-reference effect" is unclear. In the present study, we assessed the importance of attention in self-referential encoding using an ownership paradigm, which required participants to encode items under conditions of imagined ownership by themselves or by another person. Previous work has established that this paradigm elicits a robust self-reference effect, with more "self-owned" items being remembered than "other-owned" items. Access to attentional resources was manipulated using divided-attention tasks at encoding. A significant self-reference effect emerged under full-attention conditions and was related to an increase in episodic recollection for self-owned items, but dividing attention eliminated this memory advantage. These findings are discussed in relation to the nature of self-referential cognition and the importance of attentional resources at encoding in the manifestation of the self-reference effect in memory
Current Density Functional approach to large quantum dots in intense magnetic fields
Within Current Density Functional Theory, we have studied a quantum dot made
of 210 electrons confined in a disk geometry. The ground state of this large
dot exhibits some features as a function of the magnetic field (B) that can be
attributed in a clear way to the formation of compressible and incompressible
states of the system. The orbital and spin angular momenta, the total energy,
ionization and electron chemical potentials of the ground state, as well as the
frequencies of far-infrared edge modes are calculated as a function of B, and
compared with available experimental and theoretical results.Comment: Typeset using Revtex, 17 pages and 13 Postscript figure
Four theorems on the psychometric function
In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by [Formula: see text], where [Formula: see text] is the β of the Weibull function that fits best to the cumulative noise distribution, and [Formula: see text] depends on the transducer. We derive general expressions for [Formula: see text] and [Formula: see text], from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when [Formula: see text], [Formula: see text]. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian
Stationary Black Holes: Uniqueness and Beyond
The spectrum of known black-hole solutions to the stationary Einstein
equations has been steadily increasing, sometimes in unexpected ways. In
particular, it has turned out that not all black-hole-equilibrium
configurations are characterized by their mass, angular momentum and global
charges. Moreover, the high degree of symmetry displayed by vacuum and
electro-vacuum black-hole spacetimes ceases to exist in self-gravitating
non-linear field theories. This text aims to review some developments in the
subject and to discuss them in light of the uniqueness theorem for the
Einstein-Maxwell system.Comment: Major update of the original version by Markus Heusler from 1998.
Piotr T. Chru\'sciel and Jo\~ao Lopes Costa succeeded to this review's
authorship. Significantly restructured and updated all sections; changes are
too numerous to be usefully described here. The number of references
increased from 186 to 32
- …
