204 research outputs found
Does Pain at an Earlier Stage of Chondropathy Protect Female Mice Against Structural Progression After Surgically Induced Osteoarthritis?
OBJECTIVE: Female C57BL/6 mice exhibit less severe chondropathy than male mice. This study was undertaken to test the robustness of this observation and explore underlying mechanisms. METHODS: Osteoarthritis was induced in male and female C57BL/6 or DBA/1 mice (n = 6-15 per group) by destabilization of the medial meniscus (DMM) or partial meniscectomy (PMX). Some mice were ovariectomized (OVX) (n = 30). In vivo repair after focal cartilage defect or joint immobilization (sciatic neurectomy) following DMM was assessed. Histologic analysis, evaluation of gene expression in whole knees, and behavioral analysis using Laboratory Animal Behavior Observation Registration and Analysis System (LABORAS) and Linton incapacitance testing (n = 7-10 mice per group) were performed. RESULTS: Female mice displayed less severe chondropathy (20-75% reduction) across both strains and after both surgeries. Activity levels after PMX were similar for male and female mice. Some repair-associated genes were increased in female mouse joints after surgery, but no repair differences were evident in vivo. Despite reduced chondropathy, female mice developed pain-like behavior at the same time as male mice. At the time of established pain-like behavior (10 weeks after PMX), pain-associated genes were significantly up-regulated in female mice, including Gdnf (mean ± SEM fold change 2.54 ± 0.30), Nrtn (6.71 ± 1.24), Ntf3 (1.92 ± 0.27), and Ntf5 (2.89 ± 0.48) (P < 0.01, P < 0.01, P < 0.05, and P < 0.001, respectively, versus male mice). Inflammatory genes were not regulated in painful joints in mice of either sex. CONCLUSION: We confirm strong structural joint protection in female mice that is not due to activity or intrinsic repair differences. Female mice develop pain at the same time as males, but induce a distinct set of neurotrophins. We speculate that heightened pain sensitivity in female mice protects the joint by preventing overuse
Dynamics of Rye Chromosome 1R Regions with High or Low Crossover Frequency in Homology Search and Synapsis Development
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RLinv) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RLinv during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis
A Systems Biology Approach to Drug Targets in Pseudomonas aeruginosa Biofilm
Antibiotic resistance is an increasing problem in the health care system and we are in a constant race with evolving bacteria. Biofilm-associated growth is thought to play a key role in bacterial adaptability and antibiotic resistance. We employed a systems biology approach to identify candidate drug targets for biofilm-associated bacteria by imitating specific microenvironments found in microbial communities associated with biofilm formation. A previously reconstructed metabolic model of Pseudomonas aeruginosa (PA) was used to study the effect of gene deletion on bacterial growth in planktonic and biofilm-like environmental conditions. A set of 26 genes essential in both conditions was identified. Moreover, these genes have no homology with any human gene. While none of these genes were essential in only one of the conditions, we found condition-dependent genes, which could be used to slow growth specifically in biofilm-associated PA. Furthermore, we performed a double gene deletion study and obtained 17 combinations consisting of 21 different genes, which were conditionally essential. While most of the difference in double essential gene sets could be explained by different medium composition found in biofilm-like and planktonic conditions, we observed a clear effect of changes in oxygen availability on the growth performance. Eight gene pairs were found to be synthetic lethal in oxygen-limited conditions. These gene sets may serve as novel metabolic drug targets to combat particularly biofilm-associated PA. Taken together, this study demonstrates that metabolic modeling of human pathogens can be used to identify oxygen-sensitive drug targets and thus, that this systems biology approach represents a powerful tool to identify novel candidate antibiotic targets
Transgenic Expression of Soluble Human CD5 Enhances Experimentally-Induced Autoimmune and Anti-Tumoral Immune Responses
CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L) of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg), expressing a circulating soluble form of human CD5 (shCD5) as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE), as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma). This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+), and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens
The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics
The lion Panthera leo is one of the world's most charismatic carnivores and is one of Africa's key predators. Here, we used a large dataset from 357 lions comprehending 1.13 megabases of sequence data and genotypes from 22 microsatellite loci to characterize its recent evolutionary history. Patterns of molecular genetic variation in multiple maternal (mtDNA), paternal (Y-chromosome), and biparental nuclear (nDNA) genetic markers were compared with patterns of sequence and subtype variation of the lion feline immunodeficiency virus (FIVPle), a lentivirus analogous to human immunodeficiency virus (HIV). In spite of the ability of lions to disperse long distances, patterns of lion genetic diversity suggest substantial population subdivision (mtDNA ΦST = 0.92; nDNA FST = 0.18), and reduced gene flow, which, along with large differences in sero-prevalence of six distinct FIVPle subtypes among lion populations, refute the hypothesis that African lions consist of a single panmictic population. Our results suggest that extant lion populations derive from several Pleistocene refugia in East and Southern Africa (∼324,000–169,000 years ago), which expanded during the Late Pleistocene (∼100,000 years ago) into Central and North Africa and into Asia. During the Pleistocene/Holocene transition (∼14,000–7,000 years), another expansion occurred from southern refugia northwards towards East Africa, causing population interbreeding. In particular, lion and FIVPle variation affirms that the large, well-studied lion population occupying the greater Serengeti Ecosystem is derived from three distinct populations that admixed recently
Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa.
Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies
Self-medication of migraine and tension-type headache: summary of the evidence-based recommendations of the Deutsche Migräne und Kopfschmerzgesellschaft (DMKG), the Deutsche Gesellschaft für Neurologie (DGN), the Österreichische Kopfschmerzgesellschaft (ÖKSG) and the Schweizerische Kopfwehgesellschaft (SKG)
The current evidence-based guideline on self-medication in migraine and tension-type headache of the German, Austrian and Swiss headache societies and the German Society of Neurology is addressed to physicians engaged in primary care as well as pharmacists and patients. The guideline is especially concerned with the description of the methodology used, the selection process of the literature used and which evidence the recommendations are based upon. The following recommendations about self-medication in migraine attacks can be made: The efficacy of the fixed-dose combination of acetaminophen, acetylsalicylic acid and caffeine and the monotherapies with ibuprofen or naratriptan or acetaminophen or phenazone are scientifically proven and recommended as first-line therapy. None of the substances used in self-medication in migraine prophylaxis can be seen as effective. Concerning the self-medication in tension-type headache, the following therapies can be recommended as first-line therapy: the fixed-dose combination of acetaminophen, acetylsalicylic acid and caffeine as well as the fixed combination of acetaminophen and caffeine as well as the monotherapies with ibuprofen or acetylsalicylic acid or diclofenac. The four scientific societies hope that this guideline will help to improve the treatment of headaches which largely is initiated by the patients themselves without any consultation with their physicians
Increasing the power of the poor? NGO-led social accountability initiatives and political capabilities in rural Uganda
Social accountability has become an important new buzzword among development actors seeking to understand the forms of state-society synergy that may be supportive of better public services. Advocates suggest demand-side initiatives are key to increasing the power of the poor in service provision, while sceptics question the application of technical fixes to complex political challenges. This article reports findings from qualitative research into the political capabilities outcomes achieved among local health and education stakeholders through the social accountability interventions of a non-governmental organisation (NGO) in Western Uganda. It argues that NGOs are unlikely to generate substantive advances for social accountability in agrarian contexts characterised by patronage politics without organising marginalised groups themselves to tackle the causes of their disadvantage
- …