299 research outputs found

    A Femtosecond Neutron Source

    Full text link
    The possibility to use the ultrashort ion bunches produced by circularly polarized laser pulses to drive a source of fusion neutrons with sub-optical cycle duration is discussed. A two-side irradiation of a thin foil deuterated target produces two countermoving ion bunches, whose collision leads to an ultrashort neutron burst. Using particle-in-cell simulations and analytical modeling, it is evaluated that, for intensities of a few 1019Wcm210^{19} W cm^{-2}, more than 10310^3 neutrons per Joule may be produced within a time shorter than one femtosecond. Another scheme based on a layered deuterium-tritium target is outlined.Comment: 15 pages, 3 figure

    The synthetic inhibitor of Fibroblast Growth Factor Receptor PD166866 controls negatively the growth of tumor cells in culture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many experimental data evidence that over-expression of various growth factors cause disorders in cell proliferation. The role of the Fibroblast Growth Factors (FGF) in growth control is indisputable: in particular, FGF1 and its tyrosine kinase receptor (FGFR1) act through a very complex network of mechanisms and pathways. In this work we have evaluated the antiproliferative activity effect of PD166866, a synthetic molecule inhibiting the tyrosin kinase action of FGFR1.</p> <p>Methods</p> <p>Cells were routinely grown in Dulbecco Modified Eagle's medium supplemented with newborn serum and a penicillin-streptomycin mixture.</p> <p>Cell viability was evaluated by Mosmann assay and by trypan blue staining. DNA damage was assessed by <it>in situ </it>fluorescent staining with Terminal Deoxynucleotidyl Transferase dUTP nick end labeling (TUNEL assay).</p> <p>Assessment of oxidative stress at membrane level was measured by quantitative analysis of the intra-cellular formation of malonyl-dialdheyde (MDA) deriving from the decomposition of poly-unsaturated fatty acids.</p> <p>The expression of Poly-ADP-Ribose-Polymerase (PARP), consequent to DNA fragmentation, was evidenced by immuno-histochemistry utilizing an antibody directed against an N-terminal fragment of the enzyme.</p> <p>Results</p> <p>The bioactivity of the drug was investigated on Hela cells. Cytoxicity was assessed by the Mosmann assay and by vital staining with trypan blue. The target of the molecule is most likely the cell membrane as shown by the significant increase of the intracellular concentration of malonyl-dihaldheyde. The increase of this compound, as a consequence of the treatment with PD166866, is suggestive of membrane lipoperoxidation. The TUNEL assay gave a qualitative, though clear, indication of DNA damage. Furthermore we demonstrate intracellular accumulation of poly-ADP-ribose polymerase I. This enzyme is a sensor of nicks on the DNA strands and this supports the idea that treatment with the drug induces cell death.</p> <p>Conclusions</p> <p>Data presented in this work show that PD166866 has clear antiproliferative effects. The negative control of cell proliferation may be exerted through the activation of the apoptotic pathway. The results of experiments addressing this specific point, such as: evaluation of DNA damage, lipoperoxidation of the cell membrane and increase of expression of PARP, an enzyme directly involved in DNA repair. Results suggest that cells exposed to PD16866 undergo apoptosis. However, concomitant modes of cell death cannot be ruled out. The possible use of this drug for therapeutic purposes is discussed.</p

    Regulation of PTP1D mRNA by Peptide Growth Factors in the Human Endometrial Cell Line HEC-1-A

    Full text link
    Objective: To assess, in the human endometrial cell line HEC-1-A, the presence of protein tyrosine phosphatase 1D (PTDP1D) and the possible regulation of its mRNA expression by mitogens such as forskolin (an agent that increases intracellular cyclic adenosine monophosphate [cAMP] levels), epidermal growth factor (EGF), and insulin-like growth factor-I (IGF-I). Methods: Cells were grown to confluence and maintained in serum-free media for 24 hours before treatment. Cells were exposed to forskolin, EGF, and IGF-I for increasing time periods (0, 1, 3, 6, and 24 hours), and PTP1D mRNA expression was determined by Northern blot analysis. In addition, cells were incubated with increasing doses of forskolin (final concentrations: 1, 5, 10, 20, and 30 μmol/L0 for 6 hours. Results: When treated with the various mitogens, cells increased their stimulation of PTP1D mRNA expression in a time- and dose-dependent fashion. Specifically, forskolin, EGF, and IGF-I induced maximal mRNA expression at 6, 3, and 6 hours, respectively. Expression induced by forskolin, EGF, and IGF-I was five, three, and six times control levels, respectively. At a dose of 10 μmol/L, forskolin induced PTP1D mRNA expression almost two times higher than control values. Conclusion: These data suggest that in human endometrial carcinomas, cAMP, EGF, and IGF-I may regulate the expression of PTP1D mRNA, which may, in turn, play a role in uncontrolled cell proliferation and neoplastic transformation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68928/2/10.1177_107155769700400608.pd

    The occurrence and management of fluid retention associated with TKI therapy in CML, with a focus on dasatinib

    Get PDF
    Tyrosine kinase inhibitors (TKIs) like dasatinib and nilotinib are indicated as second-line treatment for chronic myeloid leukemia resistant or intolerant to the current first-line TKI imatinib. These are agents are well tolerated, but potent and as such should be monitored for potentially serious side-effects like fluid retention and pleural effusions. Here we present key clinical trial data and safety considerations for all FDA approved TKIs in context for effective management of fluid retention and pleural effusions. Altering the dasatinib regimen from 70 mg twice daily to 100 mg daily reduces the risk of pleural effusion for patients taking dasatinib. Should pleural effusion develop, dasatinib should be interrupted until the condition resolves. Patients with a history of pleural effusion risk factors should be monitored closely while taking dasatinib. Patients receiving imatinib and nilotinib are not without risk of fluid retention. All patients should also be educated to recognize and report key symptoms of fluid retention or pleural effusion. Pleural effusions are generally managed by dose interruption/reduction and other supportive measures in patients with chronic myeloid leukemia receiving dasatinib therapy

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Immunohistochemical and transcriptional expression of Matrix Metalloproteinases in full-term human umbilical cord and Human Umbilical Vein Endothelial Cells

    Get PDF
    Matrix metalloproteinases (MMPs) are extracellular zinc-dependent endopeptidases involved in the degradation and remodelling of extracellular matrix in physiological and pathological processes. MMPs also have a role on cell proliferation, migration, differentiation, angiogenesis and apoptosis. Umbilical cord is a special organ subjected to many changes during pre-natal life and whose cells can maintain a certain degree of plasticity also in post-natal period; for example recently they have been used as a source of stem cells. In this work we investigated the expression of MMPs in human umbilical cord and Human Umbilical Vein Endothelial Cells (HUVEC) though immunohistochemistry, RT-PCR and gelatin zymography. MMP-2 protein is expressed in the amniotic epithelium of human umbilical cord and in few sub-epithelial fibroblasts, while MMP-3 and MMP-10 only in the umbilical epithelium. MMP-8, MMP-9 and MMP-13 immunoreactivity is localised in the epithelium and in Wharton\u2019s jelly mesenchymal cells. Immunocytochemistry also revealed protein expression for MMP-2, 3, 8, 9 and 10 in cultured HUVEC. In agreement with immunohistochemical data, RT-PCR analysis performed on samples of whole umbilical cord confirmed the transcriptional expression for the genes encoding all the six matrix metalloproteinases investigated, while in HUVEC only the expression of MMP-2, 3, 9, 10 and 13 mRNAs was detected. Gelatin zymograpgy showed a clear MMP-2 and MMP-9 enzymatic activity in the conditioned medium of HUVEC at different culture passages, suggesting that HUVEC secrete gelatinases, that afterwards undergo extracellular activation, and this ability is not affected by passage number

    A sensitive one-step real-time PCR for detection of avian influenza viruses using a MGB probe and an internal positive control

    Get PDF
    BACKGROUND: Avian influenza viruses (AIVs) are endemic in wild birds and their introduction and conversion to highly pathogenic avian influenza virus in domestic poultry is a cause of serious economic losses as well as a risk for potential transmission to humans. The ability to rapidly recognise AIVs in biological specimens is critical for limiting further spread of the disease in poultry. The advent of molecular methods such as real time polymerase chain reaction has allowed improvement of detection methods currently used in laboratories, although not all of these methods include an Internal Positive Control (IPC) to monitor for false negative results. Therefore we developed a one-step reverse transcription real time PCR (RRT-PCR) with a Minor Groove Binder (MGB) probe for the detection of different subtypes of AIVs. This technique also includes an IPC. METHODS: RRT-PCR was developed using an improved TaqMan technology with a MGB probe to detect AI from reference viruses. Primers and probe were designed based on the matrix gene sequences from most animal and human A influenza virus subtypes. The specificity of RRT-PCR was assessed by detecting influenza A virus isolates belonging to subtypes from H1–H13 isolated in avian, human, swine and equine hosts. The analytical sensitivity of the RRT-PCR assay was determined using serial dilutions of in vitro transcribed matrix gene RNA. The use of a rodent RNA as an IPC in order not to reduce the efficiency of the assay was adopted. RESULTS: The RRT-PCR assay is capable to detect all tested influenza A viruses. The detection limit of the assay was shown to be between 5 and 50 RNA copies per reaction and the standard curve demonstrated a linear range from 5 to 5 × 10(8 )copies as well as excellent reproducibility. The analytical sensitivity of the assay is 10–100 times higher than conventional RT-PCR. CONCLUSION: The high sensitivity, rapidity, reproducibility and specificity of the AIV RRT-PCR with the use of IPC to monitor for false negative results can make this method suitable for diagnosis and for the evaluation of viral load in field specimens

    The association between baseline persistent pain and weight change in patients attending a specialist weight management service

    Get PDF
    To quantify the influence of baseline pain levels on weight change at one-year follow-up in patients attending a National Health Service specialist weight management programme.We compared one-year follow-up weight (body mass) change between patient sub-groups of none-to-mild, moderate, and severe pain at baseline. A mean sub-group difference in weight change of ≥5kg was considered clinically relevant.Of the 141 complete cases, n = 43 (30.5%) reported none-to-mild pain, n = 44 (31.2%) reported moderate pain, and n = 54 (38.3%) reported severe pain. Covariate-adjusted mean weight loss (95%CI) was similar for those with none-to-mild (8.1kg (4.2 to 12.0kg)) and moderate pain (8.3kg (4.9 to 11.7kg). The mean weight loss of 3.0kg (-0.4 to 6.4kg) for the severe pain group was 5.1kg (-0.6 to 10.7, p = 0.08) lower than the none-to-mild pain group and 5.3kg (0.4 to 10.2kg, p = 0.03) lower than the moderate pain group.Patients with severe pain upon entry to a specialist weight management service in England achieve a smaller mean weight loss at one-year follow-up than those with none-to-moderate pain. The magnitude of the difference in mean weight loss was clinically relevant, highlighting the importance of addressing severe persistent pain in obese patients undertaking weight management programmes
    corecore