138 research outputs found

    A Bio-Logical Theory of Animal Learning

    Get PDF
    This article provides the foundation for a new predictive theory of animal learning that is based upon a simple logical model. The knowledge of experimental subjects at a given time is described using logical equations. These logical equations are then used to predict a subject’s response when presented with a known or a previously unknown situation. This new theory suc- cessfully anticipates phenomena that existing theories predict, as well as phenomena that they cannot. It provides a theoretical account for phenomena that are beyond the domain of existing models, such as extinction and the detection of novelty, from which “external inhibition” can be explained. Examples of the methods applied to make predictions are given using previously published results. The present theory proposes a new way to envision the minimal functions of the nervous system, and provides possible new insights into the way that brains ultimately create and use knowledge about the world

    The fate of redundant cues: Further analysis of the redundancy effect

    Get PDF
    Pearce, Dopson, Haselgrove, and Esber (Journal of Experimental Psychology: Animal Behavior Processes, 38, 167–179, 2012) conducted a series of experiments with rats and pigeons in which the conditioned responding elicited by two types of redundant cue was compared. One of these redundant cues was a blocked cue X from A+ AX+ training, whereas the other was cue Y from a simple discrimination BY+ CY–. Greater conditioned responding was elicited by X than by Y; we refer to this difference as the redundancy effect. To test an explanation of this effect in terms of comparator theory (Denniston, Savastano, & Miller, 2001), a single group of rats in Experiment 1 received training of the form A+ AX+ BY+ CY–, followed by an A– Y+ discrimination. Responding to the individual cues was tested both before and after the latter discrimination. In addition to a replication of the redundancy effect during the earlier test, we observed stronger responding to B than to X, both during the earlier test and, in contradiction of the theory, after the A– Y+ discrimination. In Experiment 2, a blocking group received A+ AX+, a continuous group received AX+ BX–, and a partial group received AX± BX± training. Subsequent tests with X again demonstrated the redundancy effect, but also revealed a stronger response in the partial than in the continuous group. This pattern of results is difficult to explain with error-correction theories that assume that stimuli compete for associative strength during conditioning. We suggest, instead, that the influence of a redundant cue is determined by its relationship with the event with which it is paired, and by the attention it is paid

    Motor Competence between Children with and without Additional Learning Needs: A Cross-Sectional Population-Level Study

    Get PDF
    The aim of this study was to examine associations in motor competence between children with additional learning needs (ALN) and typically developing children. This cross-sectional study involved a nationally representative cohort of 4555 children (48.98% boys; 11.35 ± 0.65 years) from sixty-five schools across Wales (UK). Demographic data were collected from schools, and children were assessed using the Dragon Challenge assessment of motor competence, which consists of nine tasks completed in a timed circuit. A multi-nominal multi-level model with random intercept was fitted to explore the proficiency between children with ALN and those without. In all nine motor competence tasks, typically developing children demonstrated higher levels of proficiency than their peers with ALN, with these associations evident after accounting for age, sex, ethnicity, and socioeconomic status. This study highlights motor competence inequalities at a population level and emphasises the need for policymakers, practitioners, and researchers to prioritise motor competence development, particularly for children with ALN.</jats:p

    Tuning bilayer twist using chiral counterions

    Full text link
    From seashells to DNA, chirality is expressed at every level of biological structures. In self-assembled structures it may emerge cooperatively from chirality at the molecular scale. Amphiphilic molecules, for example, can form a variety of aggregates and mesophases that express the chirality of their constituent molecules at a supramolecular scale of micrometres (refs 1-3), Quantitative prediction of the large-scale chirality based on that at the molecular scale remains a largely unsolved problem. Furthermore, experimental control over the expression of chirality at the supramolecular level is difficult to achieve(4-7): mixing of different enantiomers usually results in phase separation(18). Here we present an experimental and theoretical description of a system in which chirality can be varied continuously and controllably ('tuned') in micrometre-scale structures. we observe the formation of twisted ribbons consisting of bilayers of gemini surfactants (two surfactant molecules covalently linked at their charged head groups). We find that the degree of twist and the pitch of the ribbons can be tuned by the introduction of opposite-handed chiral counterions in various proportions. This degree of control might be of practical value; for example, in the use of the helical structures as templates for helical crystallization of macromolecules(8,9).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62619/1/399566a0.pd

    Flower Bats (Glossophaga soricina) and Fruit Bats (Carollia perspicillata) Rely on Spatial Cues over Shapes and Scents When Relocating Food

    Get PDF
    Natural selection can shape specific cognitive abilities and the extent to which a given species relies on various cues when learning associations between stimuli and rewards. Because the flower bat Glossophaga soricina feeds primarily on nectar, and the locations of nectar-producing flowers remain constant, G. soricina might be predisposed to learn to associate food with locations. Indeed, G. soricina has been observed to rely far more heavily on spatial cues than on shape cues when relocating food, and to learn poorly when shape alone provides a reliable cue to the presence of food.Here we determined whether G. soricina would learn to use scent cues as indicators of the presence of food when such cues were also available. Nectar-producing plants fed upon by G. soricina often produce distinct, intense odors. We therefore expected G. soricina to relocate food sources using scent cues, particularly the flower-produced compound, dimethyl disulfide, which is attractive even to G. soricina with no previous experience of it. We also compared the learning of associations between cues and food sources by G. soricina with that of a related fruit-eating bat, Carollia perspicillata. We found that (1) G. soricina did not learn to associate scent cues, including dimethyl disulfide, with feeding sites when the previously rewarded spatial cues were also available, and (2) both the fruit-eating C. perspicillata and the flower-feeding G. soricina were significantly more reliant on spatial cues than associated sensory cues for relocating food.These findings, taken together with past results, provide evidence of a powerful, experience-independent predilection of both species to rely on spatial cues when attempting to relocate food

    High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review

    Get PDF
    BackgroundWhilst there is increasing interest in the efficacy of high-intensity interval training in children and adolescents as a time-effective method of eliciting health benefits, there remains little consensus within the literature regarding the most effective means for delivering a high-intensity interval training intervention. Given the global health issues surrounding childhood obesity and associated health implications, the identification of effective intervention strategies is imperative.ObjectivesThe aim of this review was to examine high-intensity interval training as a means of influencing key health parameters and to elucidate the most effective high-intensity interval training protocol.MethodsStudies were included if they: (1) studied healthy children and/or adolescents (aged 5–18 years); (2) prescribed an intervention that was deemed high intensity; and (3) reported health-related outcome measures.ResultsA total of 2092 studies were initially retrieved from four databases. Studies that were deemed to meet the criteria were downloaded in their entirety and independently assessed for relevance by two authors using the pre-determined criteria. From this, 13 studies were deemed suitable. This review found that high-intensity interval training in children and adolescents is a time-effective method of improving cardiovascular disease biomarkers, but evidence regarding other health-related measures is more equivocal. Running-based sessions, at an intensity of >90% heart rate maximum/100–130% maximal aerobic velocity, two to three times a week and with a minimum intervention duration of 7 weeks, elicit the greatest improvements in participant health.ConclusionWhile high-intensity interval training improves cardiovascular disease biomarkers, and the evidence supports the effectiveness of running-based sessions, as outlined above, further recommendations as to optimal exercise duration and rest intervals remain ambiguous owing to the paucity of literature and the methodological limitations of studies presently available

    Differential expression of genes mapping to recurrently abnormal chromosomal regions characterize neuroblastic tumours with distinct ploidy status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastic tumours (NBTs) represent a heterogeneous spectrum of neoplastic diseases associated with multiple genetic alterations. Structural and numerical chromosomal changes are frequent and are predictive parameters of NBTs outcome. We performed a comparative analysis of the biological entities constituted by NBTs with different ploidy status.</p> <p>Methods</p> <p>Gene expression profiling of 49 diagnostic primary NBTs with ploidy data was performed using oligonucleotide microarray. Further analyses using Quantitative Real-Time Polymerase Chain Reaction (Q-PCR); array-Comparative Genomic Hybridization (aCGH); and Fluorescent <it>in situ </it>Hybridization (FISH) were performed to investigate the correlation between aneuploidy, chromosomal changes and gene expression profiles.</p> <p>Results</p> <p>Gene expression profiling of 49 primary near-triploid and near-diploid/tetraploid NBTs revealed distinct expression profiles associated with each NBT subgroup. A statistically significant portion of genes mapped to 1p36 (<it>P </it>= 0.01) and 17p13-q21 (<it>P </it>< 0.0001), described as recurrently altered in NBTs. Over 90% of these genes showed higher expression in near-triploid NBTs and the majority are involved in cell differentiation pathways. Specific chromosomal abnormalities observed in NBTs, 1p loss, 17q and whole chromosome 17 gains, were reflected in the gene expression profiles. Comparison between gene copy number and expression levels suggests that differential expression might be only partly dependent on gene copy number. Intratumoural clonal heterogeneity was observed in all NBTs, with marked interclonal variability in near-diploid/tetraploid tumours.</p> <p>Conclusion</p> <p>NBTs with different cellular DNA content display distinct transcriptional profiles with a significant portion of differentially expressed genes mapping to specific chromosomal regions known to be associated with outcome. Furthermore, our results demonstrate that these specific genetic abnormalities are highly heterogeneous in all NBTs, and suggest that NBTs with different ploidy status may result from different mechanisms of aneuploidy driving tumourigenesis.</p

    Differential expression of genes mapping to recurrently abnormal chromosomal regions characterize neuroblastic tumours with distinct ploidy status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastic tumours (NBTs) represent a heterogeneous spectrum of neoplastic diseases associated with multiple genetic alterations. Structural and numerical chromosomal changes are frequent and are predictive parameters of NBTs outcome. We performed a comparative analysis of the biological entities constituted by NBTs with different ploidy status.</p> <p>Methods</p> <p>Gene expression profiling of 49 diagnostic primary NBTs with ploidy data was performed using oligonucleotide microarray. Further analyses using Quantitative Real-Time Polymerase Chain Reaction (Q-PCR); array-Comparative Genomic Hybridization (aCGH); and Fluorescent <it>in situ </it>Hybridization (FISH) were performed to investigate the correlation between aneuploidy, chromosomal changes and gene expression profiles.</p> <p>Results</p> <p>Gene expression profiling of 49 primary near-triploid and near-diploid/tetraploid NBTs revealed distinct expression profiles associated with each NBT subgroup. A statistically significant portion of genes mapped to 1p36 (<it>P </it>= 0.01) and 17p13-q21 (<it>P </it>< 0.0001), described as recurrently altered in NBTs. Over 90% of these genes showed higher expression in near-triploid NBTs and the majority are involved in cell differentiation pathways. Specific chromosomal abnormalities observed in NBTs, 1p loss, 17q and whole chromosome 17 gains, were reflected in the gene expression profiles. Comparison between gene copy number and expression levels suggests that differential expression might be only partly dependent on gene copy number. Intratumoural clonal heterogeneity was observed in all NBTs, with marked interclonal variability in near-diploid/tetraploid tumours.</p> <p>Conclusion</p> <p>NBTs with different cellular DNA content display distinct transcriptional profiles with a significant portion of differentially expressed genes mapping to specific chromosomal regions known to be associated with outcome. Furthermore, our results demonstrate that these specific genetic abnormalities are highly heterogeneous in all NBTs, and suggest that NBTs with different ploidy status may result from different mechanisms of aneuploidy driving tumourigenesis.</p

    Modifying Threat-related Interpretive Bias in Adolescents

    Get PDF
    Socially anxious feelings sharply increase during adolescence and such feelings have been associated with interpretive biases. Studies in adults have shown that interpretive biases can be modified using Cognitive Bias Modification procedures (CBM-I) and subsequent effects on anxiety have been observed. The current study was designed to examine whether the CBM-I procedure has similar effects in adolescents. Unselected adolescents were randomly allocated to either a positive interpretation training (n = 88) or a placebo-control condition (n = 82). Results revealed that the training was successful in modifying interpretations and effects generalized to a new task. The interpretive bias effects were most pronounced in individuals with a threat-related interpretive bias at pre-test. No effects on state anxiety were observed. The current findings are promising with regard to applying bias modification procedures to adolescents, while further research is warranted regarding emotional effects

    A modest start, but a steady rise in research use: a longitudinal study of nurses during the first five years in professional life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Newly graduated nurses are faced with a challenging work environment that may impede their ability to provide evidence-based practice. However, little is known about the trajectory of registered nurses' use of research during the first years of professional life. Thus, the aim of the current study was to prospectively examine the extent of nurses' use of research during the first five years after undergraduate education and specifically assess changes over time.</p> <p>Method</p> <p>Survey data from a prospective cohort of 1,501 Swedish newly graduated nurses within the national LANE study (Longitudinal Analyses of Nursing Education and Entry in Worklife) were used to investigate perceived use of research over the first five years as a nurse. The dependent variables consisted of three single items assessing instrumental, conceptual, and persuasive research use, where the nurses rated their use on a five-point scale, from 'never' (1) to 'on almost every shift' (5). These data were collected annually and analyzed both descriptively and by longitudinal growth curve analysis.</p> <p>Results</p> <p>Instrumental use of research was most frequently reported, closely followed by conceptual use, with persuasive use occurring to a considerably lower extent. The development over time showed a substantial general upward trend, which was most apparent for conceptual use, increasing from a mean of 2.6 at year one to 3.6 at year five (unstandardized slope +0.25). However, the descriptive findings indicated that the increase started only after the second year. Instrumental use had a year one mean of 2.8 and a year five mean of 3.5 (unstandardized slope +0.19), and persuasive use showed a year one mean of 1.7 and a year five mean of 2.0 (unstandardized slope +0.09).</p> <p>Conclusion</p> <p>There was a clear trend of increasing research use by nurses during their first five years of practice. The level of the initial ratings also indicated the level of research use in subsequent years. However, it took more than two years of professional development before this increase 'kicked in.' These findings support previous research claiming that newly graduated nurses go through a 'transition shock,' reducing their ability to use research findings in clinical work.</p
    • 

    corecore